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An experimental investigation was conducted to synthesise an alkali-activated binder using natural pozzolan and limestone 
powder. The effect of the mix parameters such as the binder ratio, NaOH molarity (4 - 14 M), curing temperature (25 - 90 °C), 
 sodium silicate to sodium hydroxide ratio (0.5 - 1.5), fine aggregate to binder ratio (1.4 - 2.2), alkaline activator to binder 
ratio (0.45 - 0.55) and curing days (1, 3, 7, 14, 28) were determined on the compressive strength of the mortar. A stepwise 
regression algorithm was developed to estimate the compressive strength of the mortar. Five different models (I-V) were 
developed using 130 experimental data sets with seven descriptors. Bayesian information criterion (BIC), Akaike's information 
criterion (AIC) and the sum of square error (SSE) criteria were used to fit the developed model in order to select the best 
model. The cubic with interactions model (V) is characterised with a high correlation coefficient (97.2 %), the lowest root 
means square error (1.672), and the lowest mean absolute error (1.313) in comparison with the other four models (I-IV). The 
outcomes of this work could provide an effective and efficient way of modelling the compressive strength of environmentally 
friendly binders with minimal experimental stress, limit the uncertainties and errors inherent in a laboratory.

INTRODUCTION

 The ordinary Portland cement (OPC) manufacturing 
process is energy-intensive [1]. The calcination of calcium 
carbonate during the OPC production significantly leads 
to 5 - 8 % of the global CO2 emissions into the atmosphere, 
which poses a serious danger to the world ecological 
systems [2,3]. A high demand for cement from emerging 
countries, especially China and the developing nations 
have helped to mount pressure on the cement industries to 
improve the cement production energy efficiency and also 
to find alternative raw materials for the manufacturing 
of the cement [1,4]. Despite the inevitability of using 
concrete in construction industries, the environmental 
danger of conventional ordinary Portland cement is of 
a serious concern, which necessitates urgent attention to 
search for alternative binders. Alkali-activated materials 

have been identified as a potential alternative to ordinary 
Portland cement due to their environmental friendliness, 
excellent compressive strength and low permeability.  
 Alkali-activated materials (AAM) are materials con-
taining significant amounts of alumina and silica. AAM 
is activated using alkaline solutions, the alkali activation 
process involves three main stages; the first stage is 
the dissolution of the solid aluminosilicate precursor, 
followed by the polymerisation of monomers and oligo-
mers, and finally the polycondensation and stabilisation 
of the cross-linked networks of monomers and oligomers 
reorganisation [5]. AAM has emerged as a new alter-
native binder to OPC due to its lower environmental 
impact, excellent strength development, good thermal re- 
sistance, innocuity to alkaline-aggregate reactions and 
low permeability [6–8]. The synthesis of alkali-acti-
vated binders using the world’s vast deposit of natural 
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pozzolan (NP) [9–11], rice husk ash [12], palm oil fuel 
ash (POFA) [12–16], silico-manganese slag [17], ground 
granulated blast furnace slag [17–19], fly ash [20], and 
silica fume [20,21] will contribute to waste valorisa-
tion, dumpsite land reclamation, and a reduction in the 
environmental hazards. AAM is gaining a wide range 
of applications in precast concrete and for in-situ con-
struction. About 40 000 m3 of geopolymer concrete was 
used for the construction of the heavy-duty pavement at 
the Brisbane West Well camp Airport in Australia [22]. 
In addition, several road infrastructure projects were 
constructed using a geopolymer by VicRoads State 
Agency in Australia [23]. Furthermore, several appli-
cations and the standardisation of AAM are still in 
progress in Russia, the Ukraine, South Africa, the 
Netherlands, the UK and the USA [24–26].
 The compressive strength (CS) of AAM is of great 
significance to design engineers because it is one of the 
key mechanical properties that determine its suitability 
for structural purposes. The CS of an alkali-activated 
mortar (AAMT) is a function of many parameters, such 
as the oxide compositions of the primary based materials 
(precursor), sodium hydroxide molarity (NH), the curing 
temperature, sodium silicate to sodium hydroxide ratio 
(NS/NH) or the silica modulus, the alkaline to binder 
ratio [NS + NH)/BD], the fine aggregate to binder ratio 
(FA/BD), the water to binder ratio (W/BD) and the curing 
duration [9, 14, 27]. The synthesis of an alkali-activated 
mortar by using traditional laboratory procedures for the 
acquisition of its mechanical properties is labourious, 
expensive and time-consuming. This is because, the 
processes involve the preparation, curing and testing of 
several samples [28]. Quite a lot of work on the synthesis 
of AAMT has focused on the experimental aspect more 
in order to understand the roles played by the previously 
mentioned parameters on the compressive strength of 
the paste, mortar and concrete. Many researchers have 
experimentally synthesised alkali-activated mortars and 
concrete from natural pozzolan (NP) [9,10,29–31], rice 
husk ash [12], palm oil fuel ash (POFA) [12–16], silico-
manganese slag (SiMn) [17], ground granulated blast 
furnace slag (GGBFS) [17–19,32,33], fly ash (FA) [20], 
and silica fume (SF) [20,21]. 
 In the previous studies, artificial neural networks 
(ANN) and regression analysis (RA) have been used to 
predict the AAM compressive strength of blast furnace 
slag and fly ash concrete [34]. RA has been used for 
correlating the steel-concrete bond strength to the mean 
compressive strength of OPC and geopolymer concretes 
[35]. The compressive strength of the concrete has also 
been estimated using ANN [36]. Furthermore, the com-
pressive strength of structural lightweight concrete was 
predicted using ANN [37], as well as the rheology of 
self-compacting concrete [38]. However, ANN is asso-
ciated with some draw-backs such as a slow learning 
rate, a complex design, random initialisation, non-con-
vergence to a local minimal, it also requires a large 

dataset for a better generalisation apart from its hidden 
predictive equations – a similitude of an airplane black 
box [39]. 
 Stepwise-regression analysis is used in expressing 
the correlation between the independent variables or 
input (predictors) and the dependent variables or outputs 
(response). It can either be linear or nonlinear regression. 
Linear regression is very simple, but characterises with 
low prediction accuracy and this is in antithesis to the 
nonlinear regression. Examples of nonlinear functions 
include exponential functions, trigonometric functions, 
logarithm and power functions. Thomas and Peetham-
paran developed a step-wise regression model for pre-
dicting the compressive strength of alkaline activated 
fly-ash and slag using four descriptors [40]. However, 
the developed model failed to consider the effect of 
the molarity, the wide range of curing temperatures 
and the curing duration. Generally, regression methods 
give explicit equations that can be utilised by structural 
engineers to design the models. RAs are computationally 
efficient when the predictors are small in number.  
However, when the input parameters are large with com-
plex variable interdependency, the accuracy of the model 
could be very low due to the over-fitting. Over-fitting is a 
problem that occurs when the training model has a very 
small training error, but has a large validation error.
 It is an obvious fact that the research in AAM mix 
design is a labourious exercise, time-consuming and 
leads to a waste of scarce resources. In view of this, 
it is extremely important to develop a theoretical esti-
mation model for the compressive strength of AAMT, 
this will go a long way in reducing the time, energy 
and cost for the preparation and testing of the samples. 
In this present work, natural pozzolan (NP) and lime-
stone waste powder (LSPW) solid wastes are used to 
synthesise the alkaline-activated mortar. NP is a by-pro- 
duct from volcanic eruptions, while limestone powder 
is a waste from tile manufacturing industries. Alkali-
activated binder synthesised between silica containing 
compounds, such metakaolin and natural pozzolan, with 
a calcium compound, such as limestone powder, will 
lead to the formation of an aluminosilicate framework 
in which the LSP (Ca2+) acts as a charge balance in 
the formed skeletal framework leading to formation of 
C–A–S–H or N–A–SH [5,31]. This work develops a step- 
wise-regression model for the estimation of the com-
pressive strengths of alkali-activated natural pozzolan/
limestone powder mortar (AANLM). The descriptive 
input parameters include: the binary binder variation (x), 
sodium hydroxide molarity (NH), curing temperature, 
sodium silicate to sodium hydroxide ratio (NS/NH), 
alkaline to binder ratio [(NS + NH)/BD], fine aggregate 
to binder ratio (FA/BD), water to binder ratio (W/BD) 
and the curing duration on the compressive strength 
of AANLM. The developed models using BIC and 
SSE show excellent results with a high coefficient of 
correlation, low root means square error and low mean 
absolute error.
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EXPERIMENTAL

Description of the raw binder materials

 The natural pozzolan (NP) used for this research 
was provided by Imerys Minerals Arabia, the Kingdom 
of Saudi Arabia (KSA) and the limestone powder waste 
(LSPW) was obtained as a powder formed from the tile 
industry. The physical and the chemical compositions 
of the precursor are presented in Table 1 and Table 2. 
The particle size distributions (PSDs) of the precursor 
is shown in Figure 1. The mineralogical composition 
and amorphous or crystalline nature of the raw materials 
were explored using X-ray diffraction (XRD) analysis 
and the result is shown in Figure 2. The NP mainly 
contains quartz, SiO3, plagioclase ((Ca, Na)Al2Si2O8) 
and microcline (KAl2Si2O8), it also revealed that the NP 
is amorphous in nature with very low crystallinity. The 
LSPW mainly comprises calcite (CaCO3) and quartz 
((SiO2) with a high level of crystallinity.

Synthesis of alkaline activator

 The alkaline activators used in this study are a com-
bination of a commercially available aqueous sodium 
silicate (NS) and NaOH(aq) (NH) of different molarities 
(4M, 6M, 8M, 10M, 12M and 14M). The initial silica 
modulus (Ms = SiO2/Na2O) of the SS is 3.3 and its 
percentage composition of the Na2SiO3(aq) are as follows: 
H2O: 62.11 %, SiO2: 29.13 % and Na2O: 8.76 %.

Aggregates

 Dune desert sand passing the gradation size requi-
rement of ASTM C33 [41] was used as the fine aggregate 
(FA). The fineness modulus of the FA was 1.82 while the 
specific gravity in saturated surface dry (SSD) condition 
was 2.63. 

Mix design, sample preparation
and testing

 The mixture proportions of the alkali-activated 
mortar were designed with an LSPW content of 0 %, 
20 %, 40 %, 60 % 80 % and 100 % (natural pozzolan 
contents of 100 %, 80 %, 60 %, 40 %, 20 % and 0 %, 
respectively). The samples were designated as alkali-
activated NP/LSPW mortar (AANLx), where x is the 
L/(L+N) ratio, while x varied as 0, 0.2, 0.4, 0.6. 0.8 
and 1. The fine aggregate-to-the binder (FA/B) ratio 
ranges from 1.4 to 2.2 at an interval of 0.2. The alkaline 
activator (NS/NH) ratio ranges from 0 to 1.25 while the 
alkaline activator to binder ratio (NS+NH)/(L+N) varied 
at 0.45, 0.5 and 0.55. The free water to the precursor 
(pozzolanic material) ratio was kept as 10 % of the total 
base materials (L+N) in all the mixtures. The curing 
temperatures were 25, 45, 60, 75, and 90 °C at constant 
duration of 24 hrs before being placed under laboratory 
exposure condition at 20 ± 5 °C until the age of testing 
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Figure 1.  The particle size distribution of the based materials.

Figure 2.  The X-ray diffractograms: a) raw natural pozzolan 
and b) raw limestone powder.

Table 1.  The physical properties of the NP and LSPW.

Materials Specific Average particle Specific surface
 gravity size, d50 (µm) area (cm2∙g-1)

NP 2.3 4.84 3.1
LSWP 2.7 6.43 0.6

Table 2.  The chemical compositions of the NP and LSPW obtained from XRF.

Oxides SiO2 CaO Al2O3 Fe2O3 MgO Na2O K2O SO3 L.O.I

LSPW (%) 2.5 94.1 0.8 1.2 0.6 – 0.3 0.5 44
NP (%) 74 2 13 1.5 0.5 4 5 – 5
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(1, 3, 7, 14 and 28 days). The compressive strengths of 
the AANL mortar was determined in accordance with 
ASTM C 150 [42] on 50 × 50 × 50 mm3 cube specimens 
using a digital compression testing machine. The mixture 
proportions and the range of the input parameters are 
summarised in Table 3. The average of the triplicate spe-
cimens was recorded as the compressive strength. Table 4 
summarises the proportion of the mix design and the 
compressive strengths of the 25 mixtures generating 
a total of 130 data sets for the different ages (1, 3, 7, 14 
and 28 days).

THEORETICAL

Descriptions of the proposed model
Stepwise regression algorithm

 Stepwise regression is an automatic way of building 
predictive regression models in which the appropriate 
subset of variables to be used for the prediction are 
systematically determined based on some specified 
criterion. There are two common approaches for carrying 
out stepwise regression: forward selection and backward 
elimination [40].  On one hand, models are built during 

Table 3.  The mixture proportion variables and ranges.

 SN Input parameter Notation Ranges

 1 Binder ratio (x) X 0, 0.2, 0.4, 0.6, 0.8 ,1
 2 NaOH molarity (mol dm-3) M 4, 6, 8, 10, 12, 14
 3 Moist and heat curing temperature (°C) T 25, 45, 60, 75, 90
 4 Sodium silica to sodium hydroxide ratio NS/NH 0.5, 0.75, 1, 1.25, 1.5
 5 Fine aggregate to binder ratio FA/B 1.4, 1.6, 1.8, 2.0, 2.2
 6 alkaline activator to binder ratio AK/B 0.45, 0.5, 0.55
 7 Curing age (days) D 1, 3, 7, 14, 28

Table 4.  The mixture proportions of the alkali-activated natural pozzolan/limestone powder waste mortar.

Mix  X*
 M T 

NS/NH FA/B
 AK/B CS-1 CS-3 CS-7 CS-14 CS-28

  (mol∙dm-3) (°C)    (MPa) (MPa) (MPa) (MPa) (MPa)

M1 0 10 75 1 2 0.5 4.4 4.9 5.2 7.4 8.9
M2 0.2 10 75 1 2 0.5 18.6 18.7 21.9 22.4 22.6
M3 0.4 10 75 1 2 0.5 20.7 23.9 24.3 24.5 25.0
M4 0.6 10 75 1 2 0.5 20.9 24.0 25.2 25.3 27.0
M5 0.8 10 75 1 2 0.5 12.9 14.0 14.5 15.3 15.7
M6 1 10 75 1 2 0.5 5.3 5.6 5.8 6.0 6.3
M7 0.6 4 75 1 2 0.5 4.3 4.4 4.8 5.3 6.0
M8 0.6 6 75 1 2 0.5 4.7 4.9 5.0 5.6 7.6
M9 0.6 8 75 1 2 0.5 7.9 8.4 9.0 9.8 11.6
M10 0.6 12 75 1 2 0.5 20.2 24.3 24.7 24.7 22.8
M11 0.6 14 75 1 2 0.5 21.6 23.6 24.7 24.0 22.7
M12 0.6 10 25 1 2 0.5 6.85 7.73 10.55 11.68 13.00
M13 0.6 10 45 1 2 0.5 10.68 12.47 12.76 13.25 14.13
M14 0.6 10 60 1 2 0.5 17.06 19.34 20.36 20.86 22.00
M15 0.6 10 90 1 2 0.5 23.35 24.13 24.37 24.84 25.92
M16 0.6 10 75 0 2 0.5 9.6 14.4 13.2 14.3 15.6
M17 0.6 10 75 0.5 2 0.5 15.4 18.3 18.9 19.1 18.9
M18 0.6 10 75 0.75 2 0.5 17.1 19.1 19.0 19.5 20.4
M19 0.6 10 75 1.25 2 0.5 18.3 18.9 18.8 15.3 16.2
M20 0.6 10 75 1.5 2 0.5 10.9 12.3 13.4 10.5 10.9
M21 0.6 10 75 1 1.4 0.5 15.4 18.3 20.1 22 23.5
M22 0.6 10 75 1 1.6 0.5 17.6 20.6 22.4 23.3 24.3
M23 0.6 10 75 1 1.8 0.5 18.2 21.2 23.6 24.2 25
M24 0.6 10 75 1 2.2 0.5 19.5 21.3 22.8 23.4 24.4
M25 0.6 10 75 1 2 0.45 20.3 22.2 23.7 25.0 23.7
M26 0.6 10 75 1 2 0.55 21.5 23.6 22.8 23.1 22.5

* The ratio of the limestone powder to the total base materials
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forward selection by beginning with a constant and 
continuously including the other parameters with a view 
to gaining a better fit. On the other hand, backward 
elimination commences with all the parameters and then 
continuously removes those of insignificant contribution 
to the fit. Three criteria were used to measure the accuracy 
of the developed models which include: the sum of the 
squared error, Bayesian Information Criteria and Akaike 
Information Criteria.

Sum of Squared Error (SSE)
 The sum of squared error (SSE) is a commonly 
used measure for estimating the predictive performance 
of a model. As shown in Equation 1, it is the sum of the 
square of the difference between the model output (Yest) 
and the actual experimental values (Yexp). 

(1)

Bayesian Information Criteria (BIC)
 The Bayesian Information Criteria (BIC) is another 
popular yardstick for determining the model fit. It is 
based on the likelihood function L, which measures the 
probability that the data comes from a particular po-
pulation, given a certain model. BIC tackles the problem 
of model over-fitting [40] by immensely penalising for 
the number of terms in the model. Over-fitting is the 
ability of a model to fit exactly or very closely to a given 
set of data, yet the model performs poorly on the other 
sets of data. BIC can be computed using Equation 2, 
where k is the number of model terms and n is the sample 
size. The desired model is the one which minimises the 
BIC.

BIC = k ln (n) – 2 ln (L)                   (2)

Akaike Information Criteria (AIC)
 The Akaike Information Criteria (AIC) is closely 
related to the BIC. Both AIC and BIC balance between 
the goodness of the fit (likelihood function) and the 
over-fitting (mainly estimated from the number of model 
terms k). However, as can be seen from the first terms 
on the right-hand side of Equations 2 and 3, AIC has 
a smaller penalty for over-fitting, when compared to BIC.

AIC = 2 k – 2 ln (L)                         (3)

Criteria for generalising the performance 
of the developed models

 For the assessment of the accuracy of the developed 
stepwise-regression models, the root mean square error 
(RMSE), mean absolute error (MAE) and the coefficient 
of correlation (CC) were used as shown in Equations 4-6, 
respectively.

(4)

(5)

(6)

where Erj represents the difference between the expe-
rimental and estimated compressive strength value and 
m stands for the total number of data points. Vj(exp) and 
Vj(est) respectively represent the experimental and the 
estimated compressive strength while V'(exp) and V'(est) 
stand for their mean values, respectively.

Description of the dataset

 The training, validation and testing stages of the 
developed predictive models (model I, model II, model 
III, model IV and model V) were performed using the 
dataset contained in Appendix 1. The stepwise-regression 
training, validation and testing models were developed 
using 130 data-points with seven inputs parameters or 
descriptors for the prediction of the compressive strength. 
These include the binary binder variation (percentage 
combination of the NP and LSPW), sodium hydroxide 
molarity (M), curing temperature (T), sodium silicate to 
sodium hydroxide ratio (NS/NH), alkaline to binder ratio 
[NS + NH)/BD], fine aggregate to binder ratio (FA/BD), 
water to binder ratio (W/BD) and the curing duration 
(D). 
 The descriptors used for the developed model are 
important parameters that influence the compressive 
strength performance of alkaline-activated binders. The 
proposed model incorporates several factors which are 
yet to be reported in the literature. This makes the deve-
loped model in this study more robust. 

Computational methodology for model 
training, validation and testing

 The normalisation of the dataset was undertaken 
in order to improve the prediction capacity and the 
efficiency of the developed model, which was carried out 
using stepwiselm in MATLAB. The randomisation of the 
dataset was undertaken by dividing the data into 70 % 
of the training set, 15 % of the validation set and 15 % 
of the testing set. The training data set was used to build 
five classes of the predictive model as shown below:
I. Linear without interactions: The model can have 

an intercept, as well as a linear term for each input 
parameter.

II. Linear with interactions: The model may contain 
an intercept, as well as a linear term for each input 
parameter, and all the products of pairs of distinct 
input parameters (no squared terms).
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(est)
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III. Pure Quadratic: The model can contain an intercept 
term, as well as linear and squared terms for each 
input parameter.

IV. Quadratic with interaction: The model may have an 
intercept term, as well as linear and squared terms 
for each predictor, and all the products of the pairs of 
distinct predictors.

V. Cubic with interactions: The model may have an 
intercept term, as well as linear, squared and cubed 
terms for each input parameter, and all the products 
of the pairs of distinct input parameters.

 The Bayesian information criterion (BIC), Akaike’s 
information criterion (AIC) and sum of the square error 
(SSE) criteria were used to fit the developed model from 
which the best choice is selected using CC, RMSE and 
MAE. Figure 3 shows the step by step procedures used 
in developing each of the models:

RESULTS AND DISCUSSION

Evaluation of the generalisation and predictive 
capacity of the developed models

 The correlation coefficient (CC), root means square 
error (RMSE) and mean absolute error (MAE) were used 
to evaluate the predictive capacity of all the developed 
models under the influence of a fitting criteria (BIC, 
AIC, and SSE). Generally, the accuracy of all the models 
increases as the order of the equation increases using the 
three fitting criteria. Considering the CC values of the 
BIC models, an accuracy of 61.4 %, 80.1 % and 53.6 % 
were obtained during the training, validation and testing, 
respectively, for the linear without interactions model 
(model I) as shown in Table 5. Similar values were ob-
tained for the linear with interactions model (model II). 
However, when the order of the model changed to 
second-order (model III and IV), the accuracy of the 
model improved by 48.86 %, 15.73 %, and 72.39 % for 
the training, validation and testing, respectively (Tab. 
5). The cubic with interactions model (model V) gave 
the best predictive model with an accuracy of 96.6 %, 
97.8 % and 97.2 % during the training, validation and 
testing of the developed model. Similar trends were 
observed using the RMSE and the MAE as shown in 
Table 5. Furthermore, using the SSE and AIC as fitting 
criteria, the accuracy of all the models increases as the 
order of the equation increases (Tables 6 and 7). Model V 
showed excellent performance with high values of CC 
and low values of RMSE and MAE when compared with 
the models (I-IV) (Tables 6 and 7). 
 The best testing model (model V) was used to com-
pare the predictive strength of the developed model. 

1. Start 
2. Split dataset into training, validation and test datasets
3. for each criterion cr in {SSE, AIC, BIC} do 
4. for each model mdl in {linear – interactions, linear + interactions, pure
5. quadratic, quadratic + interactions, cubic + interaction} do
6. Build forward selection stepwise regression model
 from training set using cr and mdl
7. Record performance of stepwise model on training,
 validation and test sets
8. bestModelEquation ← model with best performance
 on validation set so far
9. end for
10. end for
11. Output bestModelEquation

Figure 3.  The computational methodology of the developed 
models.

Table 5.  The model performance during the training, validating and testing phases of the stepwise regression model using the 
Bayesian information criterion (BIC).

 
Training Validation Testing

 Training Validation Testing Training Validation Testing
Model 

CC CC CC
 RMSE RMSE RMSE MAE MAE MAE

    (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

Linear – interactions 0.614 0.801 0.536 5.117 5.386 5.263 4.123 4.597 4.060
Linear + interactions 0.614 0.801 0.536 5.117 5.386 5.263 4.123 4.597 4.060
Pure quadratic 0.914 0.927 0.924 2.623 3.386 2.411 2.148 2.894 2.083
Quadratic + interactions 0.914 0.927 0.924 2.623 3.386 2.411 2.148 2.894 2.083
Cubic + interactions 0.966 0.978 0.972 1.682 1.741 1.672 1.309 1.368 1.313

Table 6.  The model performance during the training, validating and testing phases of the stepwise regression model using the Sum 
of the square error (SSE).

 
Training Validation Testing

 Training Validation Testing Training Validation Testing
Model 

CC CC CC
 RMSE RMSE RMSE MAE MAE MAE

    (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

Linear – interactions 0.632 0.827 0.549 5.025 5.205 5.210 4.076 4.512 4.131
Linear + interactions 0.632 0.827 0.549 5.025 5.205 5.210 4.076 4.512 4.131
Pure quadratic 0.914 0.927 0.924 2.623 3.386 2.411 2.148 2.894 2.083
Quadratic + interactions 0.914 0.927 0.924 2.623 3.386 2.411 2.148 2.894 2.083
Cubic + interactions 0.966 0.978 0.972 1.682 1.741 1.672 1.309 1.368 1.313
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Figures 4, 5 and 6 depicted the CC, RMSE and MAE, 
respectively, for the developed cubic with interactions 
model (model V) using the BIC, SSE and AIC fitting 
criteria. Figure 4 compares the model using the CC as the 
accuracy criteria. The developed model using BIC and 
SSE showed similar performance and outperformed the 
model built with AIC by 2.8 %. When using the RMSE 
and MAE as the criteria to measure the accuracy of the 
model, the BIC and SSE showed similar performance 
as shown in Figures 5 and 6 and outperformed AIC by 
an improvement of 11.73 % and 13 % using the RMSE 
and MAE, respectively. Therefore, BIC was used as the 
fitting criterion throughout the remaining part of this 
paper.

Predictive models for the compressive 
strength of the mixtures

 The developed predictive models using the forward 
stepwise algorithm with the Bayesian information 
criterion (BIC) as the fitting criterion are presented 
in Equations 7 to 9. Equation 7 is for model I and II, 
Equation 8 is for model III and IV, while Equation 9 is 
for model V. The compressive strength of the mortar was 
expressed as a function of the binary binder variation 
(x), sodium hydroxide molarity (M), curing temperature 
(T), sodium silicate to sodium hydroxide ratio (NS/NH), 
alkaline to binder ratio [NS + NH)/BD], fine aggregate to 
binder ratio (FA/BD), water to binder ratio (W/BD) and 
the curing duration (D).  

 f 
c'   = –16.6 + 2.21M + 0.164T                                      (7)

 f 
c'   = 219.242 + 56.051x + 6.682M + 0.220T +

     + 23.727(NS/NH) – 1114.001(AK/B) +
     + 0.089D – 59.895x2 – 0.235M 2 –
     – 15.394(NS/NH)2 + 1107.851(AK/B)2           (8)

 f 
c'   = 193.527 + 97.201x – 20.050M + 0.234T +

     + 3.554(NS/NH) + 4.003(FA/B) –
     – 784.843(AK/B) + 1.581D – 0.285D(FA/B) –
     – 159.349x2 + 2.848M 2 + 19.199(NS/NH)2 +
     + 778.693(AK/B)2 – 0.079D2 + 61.066x3 –
     – 0.110M 3 – 14.733(NS/NH)3 + 0.002D3        (9)

Table 7.  The model performance during the training, validating and testing phases of the stepwise regression model using the 
Akaike's information criterion (AIC).

 
Training Validation Testing

 Training Validation Testing Training Validation Testing
Model 

CC CC CC
 RMSE RMSE RMSE MAE MAE MAE

    (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

Linear - interactions 0.632 0.827 0.549 5.025 5.205 5.210 4.076 4.512 4.131
Linear + interactions 0.651 0.759 0.435 4.920 5.483 6.661 3.910 4.739 5.083
Pure quadratic 0.918 0.939 0.910 2.566 3.073 2.603 2.039 2.652 2.133
Quadratic + interactions 0.923 0.930 0.894 2.492 3.172 2.812 1.914 2.775 2.285
Cubic + interactions 0.967 0.976 0.952 1.646 1.750 1.908 1.271 1.340 1.489

Model 5

1.50

1.45

1.55

1.70

1.75

1.80

1.85

1.90

1.95

2.00

1.60

R
oo

t m
ea

n 
sq

ua
re

 e
rro

r  
(M

Pa
)

Bayesian information criterion (BIC)
Sum of square error (SSE)
Akaikes’s information criterion (AIC)

Model 5

0

0.6

0.2

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.4M
ea

n 
ab

so
lu

te
 e

rro
r (

M
Pa

)

Bayesian information criterion (BIC)
Sum of square error (SSE)
Akaikes’s information criterion (AIC)

Model 5

0.80

0.86

0.82

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.84C
or

re
la

tio
n 

co
ef

fic
ie

nt
  (

%
)

Bayesian information criterion (BIC)
Sum of square error (SSE)
Akaikes’s information criterion (AIC)

Figure 5.  Comparing the RMSE of BIC, SSE and AIC.

Figure 6.  Comparing the MAE of BIC, SSE and AIC.

Figure 4.  Comparing the CC of BIC, SSE and AIC. 
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 The efficiency of the proposed models during the 
training, validation and testing was evaluated using the 
correlation coefficient (CC), root means square error 
(RMSE) and means absolute error (MAE). Figures 7, 8 
and 9 depicted the CC, RMSE and MAE, respectively, 
for all the developed predictive models. The linear 
without interactions model (model I) and the linear with 
interactions model (model II) only picked two input 
parameters (molarity and temperature) as the predictors 
(Equation 7), this causes the model to have low CC va-
lues of 61.4 %, 80.1 % and 53.6 % during the training, 
validation and testing, respectively, as shown in Figure 7. 
 However, when the order of the model changed to 
a second-order (model III and IV), the accuracy of the 
model improved by 48.86 %, 15.73 %, and 72.39 % for the 
training, validation and testing, respectively (Figure 7). 
The cubic with interactions model (model V) gave the 
best predictive model with accuracy of 96.6 %, 97 8 % 
and 97.2 % during the training, validation and testing 
of the developed model. RMSE values of 5.386, 5.263 
and 5.263 were obtained during the training, validation 
and testing, respectively, for linear without interactions 
model (model I) and the linear with interactions model 
(model II) as shown in Figure 8. However, when the 
order of the model changed to a second-order (model III 
and IV), the RMSE values reduced by 48.74 %, 37.08 %, 
and 54.19 % for the training, validation and testing, 
respectively (Figure 8). The cubic with interactions 
model (model V) gave the best predictive model with 
the minimum RMSE of 1.682, 1.741 and 1.672 during 
the training, validation and testing of the developed 
model (Figure 8). Similar trends were observed using the 
MAE as shown in Figure 9. Model V showed excellent 
performance with the maximum CC and minimum 
RMSE and MAE when compared with the models 
(I-IV).

Estimation of the compressive strength 
of the mixtures using Model 5

 The correlation between the experimental and 
estimated compressive strength of the AALNMT of the 
developed cubic with the interaction model (model V) 
during the training section is depicted in Figure 10. The 
R2-square value of 94.2 % was recorded as revealed in 
Figure 10. The R2-square value of 94.3 % was obtained 
for the validation data as depicted in Figure 11 while the 
scatter plot for the testing stage showed an R2-square 
value of 90.2 % as depicted in Figure 12. Generally, 
the estimated compressive strength for most of the data 
sets during the training, validation and testing were very 
close to the experimental values. Considering the high 
R2-square value with the low RMSE and MAE of the 
testing, validation and testing data sets (Tab. 6), this 
points to the fact that the developed model is reliable, 
robust, accurate, and subsequently capable of estimating 
the compressive strength of the alkaline-activated mortar.
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Figure 7.  Comparison of the predictive strength of the stepwise 
regression models using the CC of the BIC.

Figure 8.  Comparison of the predictive strength of the stepwise 
regression models using. The root mean square error of the BIC.

Figure 9.  Comparison of the predictive strength of the stepwise 
regression models using. The mean absolute error of the BIC.
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CONCLUSIONS

 In this paper, we modelled the compressive strength 
of an alkali-activated natural pozzolan/limestone 
powder mortar (AALNM) using a stepwise regression 
algorithm. Five different models (model I = linear 

without interactions, model II = linear with interactions, 
model III = pure quadratic, model IV = quadratic with 
interactions and model V = cubic with interactions) were 
developed with seven descriptive features; the binary 
binder variation, sodium hydroxide molarity, curing 
temperature, sodium silicate to sodium hydroxide ratio, 
alkaline to binder ratio, fine aggregate to binder ratio, 
and the curing duration. The models were fitted using 
the Bayesian information criterion (BIC), Akaike’s 
information criterion (AIC) and the sum of the square 
error (SSE) criteria. The results showed that the models 
developed using BIC and SSE have equal performance 
(CC = 0.972) and performed better than the predicti-
ve model with AIC (CC = 0.952). The generalisation 
strength of the developed models was investigated 
using the coefficient of correlations, root means square 
error and mean absolute error. Model V (cubic with 
interaction model) performed excellently, better than the 
other predictive models I-IV with an accuracy of 97.2 % 
measured on the basis of the correlation coefficient. 
Model V shows excellent results with a high coefficient 
of correlation, low root means square error and low mean 
absolute error. It also has a high potential for the quick 
and accurate estimation of the compressive strength of the 
mortar due to its excellent generalisation and predictive 
ability. Besides, the regression model developed would 
enhance the waste valorisation and judicious usage of the 
time deployed into the experimentation in the course of 
the synthesis of alkaline-activated binders. 
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