GRAPHENE- AND GRAPHITE OXIDE-REINFORCED MAGNESIUM OXYCHLORIDE CEMENT COMPOSITES FOR THE CONSTRUCTION USE

*Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
**Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic
***Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech Republic
#E-mail: Ondrej.Jankovsky@vscht.cz

Submitted August 14, 2020; accepted October 20, 2020

Keywords: Graphene, Composites, Magnesium oxychlorides

Graphene and graphite oxide reinforced magnesium oxychloride cement (MOC) pastes were researched. To produce MOC pastes, the light-burnt magnesium oxide was added and dispersed in the magnesium chloride solution. The graphene powder, graphite oxide powder, and their combination were incorporated in the solution. The total amount of the nano additives was 0.5 % by the weight of the magnesium oxychloride binder. The morphology and microstructure of the hardened materials were studied using scanning electron microscopy (SEM). The phase composition of precipitated MOC-based products was investigated using X ray diffraction (XRD). The macrostructural parameters of the composites such as bulk density, specific density, and open porosity were evaluated. Mechanical strength and stiffness were analyzed by the measurement of flexural and compressive strength and dynamic elastic modulus. The electrical properties were examined by the use of impedance spectroscopy (IS). From the experimental results the model of the transport of electric charge in researched materials dispersion was estimated. The use of graphene- and graphite oxide-reinforcement of MOC matrix gave highly dense materials of low porosity, high mechanical resistance, whereas the used nano-additives enabled the produce of composites of high strength efficiency index. The addition of graphene particles and the formation of graphite agglomerates significantly decreased electrical resistivity of the MOC matrix which was originally characterized by low electrical conductivity.

INTRODUCTION

Magnesium oxychlorides (MOC), also known as Sorel cements, are a promising alternative to Portland cement (PC). They are inorganic compounds which form in the system MgO–MgCl₂–H₂O by the reaction in the suspension of magnesium oxide powder dispersed in the aqueous solution of magnesium dichloride [1]. There are typically four types of such material. Their formation depends on the molar ratio of the precursors, temperature and reactivity of used magnesia powder. Depending on these conditions, either Phase 3 (3MgO·MgCl₂·8H₂O) or Phase 5 (5MgO·MgCl₂·8H₂O) can be obtained at laboratory temperature, and Phase 2 (2MgO·MgCl₂·4H₂O) and Phase 9 (9MgO·MgCl₂·5H₂O) can be obtained at temperatures above 100 °C [2-7]. The MOCs have an enormous potential as an alternative to Portland cement in terms of their environmental sustainability and their ability to capture CO₂ from the atmosphere. Their production is accompanied with a smaller amount of released CO₂ (compared to the production of PC). Because of both reasons mentioned above, they can be marked as CO₂-neutral [8-10]. They have very specific mechanical and other properties that are, in some ways, making them superior to PC. Namely, it is their very high fire-resistance[11], abrasion resistance[12], low rate of heat transport, and great elastic and acoustic properties [13]. These properties show the high potential of MOC in the construction industry. However, in previous studies, there were shown some difficulties with this sort of material, mostly with its low resistance to water. When exposed to water for a longer time, the magnesium chloride starts to leach from the structure. The primary structure of the binder is changing and the only compound left as a binding phase is brucite (Mg(OH)₂) [14]. This problem was previously studied and there are multiple ways to minimize this drawback already presented in the literature [15-19]. One of the possible solutions to this problem is the addition of carbon-based nanomaterials in small percentages [20].

Graphene and graphite oxide belong to the group of carbon-based nanomaterials. They have very specific
chemical, physical and mechanical properties [21-24]. They can be divided into groups in terms of their dimensions. For example, buckminsterfullerene can be assigned to the group of 0D carbon nanomaterials, while carbon nanotubes (SWCNTs and MWCNTs) and graphene nanoribbons belong in the group of 1D nanomaterials and graphene and its derivatives such as graphene, fluorographene or graphite oxide are representatives of 2D carbon nanomaterials [25-27].

Graphene is mostly used in electronics, mainly because of its unique electronic, thermal and mechanical properties [28, 29]. However, as it is a zero-gap semiconductor, its possible applications are limited and it has to be chemically modified with different elements, such as boron, nitrogen, sulfur, phosphorus, or halogens [30-36].

Graphite oxide represents one of the main precursors of graphene-based nanomaterials. It can be applied as a waste-water purifying agent from inorganic or organic pollutants. It can be synthesized by oxidizing of graphite using permanganates or chlorates in the presence of concentrated acids. The emerging functional groups, such as hydroxyls, epoxides, ketones or carboxylic groups can be easily modified or reduced [37-45].

Both graphene and graphite oxide have been previously used as an additive in composite materials, such as ceramics-graphene composites [46], silicon nitride [47] or TiO$_2$-graphene composites [48].

In the construction industry, the materials doped by graphene and graphite oxide are developing quite quickly. Due to their specific properties, they are being studied very thoroughly, because of the impact of their addition in building materials, namely the positive effect on the mechanical resistance and durability [49].

The results presented in previous studies demonstrate some promising results in use with MOC-based composite materials [50, 51]. The combination of the specific properties of both MOC and the carbon-based nanomaterial could make the composite material sufficient or even a superior alternative to construction materials, which are nowadays used more commonly. Their application potential is mostly in extreme conditions, where the commonly used construction materials are not sufficient.

In this contribution, the MOC-based composites containing graphene and graphite oxide were synthesized. The phase composition, morphology and mechanical properties were analyzed and compared to a reference sample, which did not contain any carbon-based nano-additive. Also, the electrical properties were examined by the use of impedance spectroscopy (IS). From the experimental results was estimated dispersion model of the transport of electric charge in researched materials.

EXPERIMENTAL

Materials

The graphite oxide (GO) was obtained from ACS Material, LLC, United State of America. The graphene (G) nanoplatelets (obtained from Alfa Aesar) had a surface area 500 m2·g$^{-1}$. Its purity was determined by XRF. The results showed 99.9 wt. % purity with only small traces of S, Si and Fe. The light-burnt magnesia powder was obtained from Styromagnesit-Steirische-Magnesitindustrie Ltd., Austria. Its chemical composition was also analyzed using XRF and recalculated to the content of oxides. The sample contained oxides of magnesium, silicon, calcium, and others. The contents of the oxides are shown in Table 1. The magnesium chloride hexahydrate crystals of p.a. purity (supplied by Lach-Ner Ltd., Czech Republic) were used.

| Table 1. Chemical composition of magnesia powder. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Content | MgO | SiO$_2$ | CaO | Al$_2$O$_3$ | Fe$_2$O$_3$ | SO$_3$ |
| % wt. | 80.7 | 4.1 | 5.0 | 5.8 | 3.9 | 0.2 |

Synthetic procedures

The preparation of the composite materials was performed following the standard EN 14016-2 [52]. In our synthetic procedure, the light-burned magnesium powder was used in excess. This step was taken due to the previous results described in the study of Dong et al., showing the content of active magnesium oxide in the mixture [53]. The mass of the individual raw materials is summarized in Table 2. The preparation process started with the dissolving of MgCl$_2$·6H$_2$O in the tap water. The carbon-based nano-additives (graphene powder, graphite oxide powder and their blend) were added in the solution in the amount of 0.5 % by the weight of the magnesium oxychloride binder, creating three samples, which were termed MOC-G (content of graphene powder of 0.5 wt. %), MOC-GO (containing 0.5 wt. %

<p>| Table 2. The proportions of the composite mixtures. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Material</th>
<th>MgO</th>
<th>MgCl$_2$·6H$_2$O</th>
<th>Mass (g)</th>
<th>Water</th>
<th>Graphene</th>
<th>Graphite oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC</td>
<td>1918.0</td>
<td>849.6</td>
<td>564.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MOC-G</td>
<td>1918.0</td>
<td>849.6</td>
<td>564.8</td>
<td>13.8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MOC-GO</td>
<td>1918.0</td>
<td>849.6</td>
<td>695.0</td>
<td>–</td>
<td>13.8</td>
<td>–</td>
</tr>
<tr>
<td>MOC-G+GO</td>
<td>1918.0</td>
<td>849.6</td>
<td>564.8</td>
<td>6.9</td>
<td>6.9</td>
<td>–</td>
</tr>
</tbody>
</table>
of graphite oxide powder), and MOC-G+GO that contained 0.5 wt. % of graphene and graphite oxide powder combined). The magnesia powder was added and dispersed in the magnesium chloride solution. Also, a reference sample, containing only the binder itself was prepared and termed MOC-R. The sample containing GO showed highly hydrophilic behavior resulting in the need to add a higher amount of water compared to the other samples. To get a homogenous suspension of the carbon-based nanomaterials in the solution of magnesium chloride, the mixtures were sonicated for 15 min.

The prepared mixtures were put in the prismatic plastic molds with the dimension of 40 × 40 × 160 mm. After 24 hours the samples were removed from the molds and left for 6 days at laboratory (T = 22 ± 2 °C, RH = 45 ± 5 %).

Analytical techniques

The morphology was studied by SEM (scanning electron microscopy), while the phase composition was analyzed by XRD (X-ray powder diffraction).

The structural parameters such as the bulk density, specific density and open porosity of the hardened composites were investigated. For those purposes, the particular samples were dried in a vacuum drier Vacucell (BT, Czech Republic) at 60 °C. Five samples of each composite mixture were tested. The dry bulk density ρs (kg m⁻³) was measured on the halves of casted prisms according to the procedure described in the EN 1015-10 [54]. The expanded combined uncertainty (ECA) of the bulk density test was 1.4 %. The specific density ρb (kg m⁻³) was tested by a helium pycnometer Pycnomatic ATC (Porotec, Germany) helium pycnometer. The typical sample mass was about 4 g. The ECA of this experiment was 1.2 %. Based on the dry bulk density and specific density tests, the open porosity φ (%) was calculated as originally presented in [55]. The porosity was assessed with the ECA of 2.0 %.

Key parameters affecting the applicability of materials for bearing purposes are mechanical properties. In this paper, flexural strength and compressive strength of the casted composites were determined to reveal the impact of the use of nano-additives in MOC-based matrix. The stiffness of materials was characterized by the modulus of elasticity. The flexural strength of the prepared samples f_f (MPa) was studied on casted prisms in a standard three-point-bending test arrangement. The compressive strength f_c (MPa) was analyzed on the specimen fragments from the flexural strength assessment. Both strength tests were performed in agreement with the EN 1015-11 [56]. The ECA of the strength tests was 1.4 %. The Young’s modulus (dynamic modulus of elasticity) E_C (GPa) was determined by the ultrasound velocity test using instrument Pundit Lab+ (Proceq, Schwerzenbach, Switzerland). The ECA of this method was 2.3 %.

The measurement of electrical parameters was conducted with a Solartron SI 1260 Impedance/Gain-Phase Analyzer (Solartron Analytical, UK) with Solartron Dielectric Interface 1296 device. The dependences of the impedance magnitude and the impedance phase on the frequency in the range from 1 to 10 MHz were measured. The dielectric properties can be characterized by the impedance Z (Ω), which is as sum of the resistance R (real part of impedance) and the capacitive reactance X_C = –1/(ωC) (imaginary part of impedance) as follows

\[Z = R + jX_C = |Z| \exp (j \varphi), \]

where \(j = \sqrt{-1} \) is the imaginary unit, \(|Z| = \sqrt{R^2 + X_C^2} \) is the impedance modulus and \(\varphi = \arctg (X_C/R) \) is the phase shift between a real and an imaginary part [57].

In a case of dispersion of electric charge carriers during transport through the material, the constant phase element (CPE) [58], described by Equation 2, needs to be taken into consideration

\[Z = \frac{1}{Y_0 \omega^n} \exp \left(\frac{-j \pi}{2} n \right) . \]

Special cases of this term are capacitive reactance \(X_C = -1/(\omega Y_0) = -1/(\omega C) \) (for \(n = 1 \)), resistance \(R = 1/Y_0 \) (for \(n = 0 \)) or inductive reactance \(X_L = \omega L \) (for \(n = -1 \)). Meaning of parameter \(Y_0 \) therefore depends on the type of components (resistance R, conductance G, capacitance C, inductance L, or generally constant phase element CPE).

RESULTS AND DISCUSSION

The prepared samples of MOC-based composite materials containing nano-additives as well as the reference sample are shown in Figure 1.
Using SEM, the microstructure of all four samples was analyzed. The micrographs obtained at lower magnifications are shown in Figure 2. The microstructure of all the samples presented as highly dense without any visible defects. In addition, more detailed SEM micrographs of the composites can be seen in Figure 3.

Figure 2. SEM micrographs of the analyzed composites.

Figure 3. Detailed micrographs of the analyzed composites acquired by SEM. (Continue on next page)
In the microstructure, there are visible several particle shapes that can be assigned to the various phases. The MgO which is present as a micro-filler is visible as a micro-granular phase. The MOC Phase 5 is present in the form of needle-shaped crystals, which is typical for this sort of materials.

The X-ray diffraction patterns of the samples (see Figure 4) show almost similar phase composition. Both MgO (ICDD 04-014-0288) and Mg_3(OH)_5Cl·4H_2O (ICDD 04-014-8836, Phase 5 of MOC) are present. The reference sample also shows the presence of chlorartinite (ICDD 00-061-0391), which is present due to the CO₂-capture process, which is typical for MOC [59]. The nanomaterials cannot be observable in the diffraction patterns due to their fine structure and because only 0.5 wt. % of them were used for the prepared samples.

The basic macrostructural parameters of the MOC-based materials can be seen in Table 3. All tested materials exhibited low open porosity which further dropped with the incorporation of both nano-additives in the composite mix. The lowest porosity yielded the use of graphite oxide, the drop was approx. 45 % in comparison with the reference material labeled MOC. This was assigned to the development of a thin layer of graphite oxide platelets on the precipitated MOC crystals [20]. Qualitatively, the macrostructural data presented in Table 3 were in a good compliance with data provided by SEM that pointed to the highly-dense microstructure of tested materials. Moreover, the needle shape crystals of MOC visible in the detailed SEM micrographs were interlocked with graphene agglomerates and GO platelets which resulted in the decreased porosity of nano-additives modified composites. Except of material MOC-GO, both the bulk density and specific density were almost unaffected by the application of nano-additives in mix composition.

The mechanical strength and stiffness of MOC-based materials are apparent from Table 4. Except that all composites reported high mechanical strength and elastic modulus which is typical for materials based on MOC [60, 61], two distinct features were observed for nano-additives modified materials. Firstly, the addition of graphene nanoplatelets greatly elevated the compressive strength of MOC-G and MOC-G+GO materials. Then, the use of graphite oxide in mix composition resulted in improved flexural strength and stiffness. Moreover, the synergic performance of nano-additives gave material of enhanced all investigated mechanical parameters.
Graphene- and graphite oxide-reinforced magnesium oxychloride cement composites for the construction use

Table 4. Mechanical parameters of the analyzed composites.

<table>
<thead>
<tr>
<th>Material</th>
<th>f_c (MPa)</th>
<th>f_t (MPa)</th>
<th>E_m (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC</td>
<td>65.1 ± 0.9</td>
<td>16.9 ± 0.2</td>
<td>35.6 ± 0.8</td>
</tr>
<tr>
<td>MOC-G</td>
<td>82.1 ± 1.2</td>
<td>18.1 ± 0.3</td>
<td>36.7 ± 0.8</td>
</tr>
<tr>
<td>MOC-GO</td>
<td>67.6 ± 1.0</td>
<td>23.7 ± 0.3</td>
<td>40.3 ± 0.9</td>
</tr>
<tr>
<td>MOC-G+GO</td>
<td>76.8 ± 1.1</td>
<td>19.8 ± 0.2</td>
<td>38.1 ± 0.9</td>
</tr>
</tbody>
</table>

In research of supplementary cementitious materials (SCM), assessment of mechanical strength of pozzolan-modified mortars is usually done by strength activity index (SAI) [60]. It is defined in the standard EN 450-1 [62, 63] as a ratio of the compressive strength of the blends with incorporated mineral admixture to the compressive strength of the reference Portland cement mortar. A material is considered as pozzolanic if SAI ≥ 75 %. In this paper, we used the modification of this procedure and evaluated the effectiveness of the tested nano-additives by the strength efficiency coefficient (SEC) which was calculated both for compressive strength (SEC_f) and flexural strength data (SEC_ff). The results are introduced in Table 5. For all materials with applied nano-additives the SEC values were > 100 % which clearly demonstrated the contribution of graphene nanoplatelets and graphite oxide to the mechanical resistance of MOC matrix.

Table 5. Strength efficiency coefficient (SEC) of the analyzed composites.

<table>
<thead>
<tr>
<th>Composite</th>
<th>SEC_f (%)</th>
<th>SEC_ff (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC-G</td>
<td>126.1</td>
<td>107.1</td>
</tr>
<tr>
<td>MOC-GO</td>
<td>103.8</td>
<td>140.2</td>
</tr>
<tr>
<td>MOC-G+GO</td>
<td>118.0</td>
<td>117.2</td>
</tr>
</tbody>
</table>

From the measured dependencies of the impedance magnitude and the impedance phase on the frequency, model of the transport of electric charge throw the researched materials was proposed (see Figure 5). This model consists from the geometrical capacity C_g, serial resistivity R_s and two parallel combinations of resistors and capacitors (R_1C_1 and R_2C_2) connected in serial. By fitting the parameters of experimental data, the parameters of constant phase element Y and n (see Equation 2) of all model parameters were determined. It was found that resistors R_1 and R_2 have dispersion character (dispersion in charge transport) and capacitors C_1 and C_2 are also dispersive (dispersion in charge polarization).

The influence of the model parameters on the experimental data is apparent from the dependences of the impedance phase on the impedance magnitude (see Figure 6). It is evident that volume electric capacity had dispersive character of charge polarization with parameter n_C1 (see Equation 2) < 1.0 (n_C1 = 0.97, \(\varphi_z \approx -87^\circ \)). Also, the volume electric resistivity of electric charge transport exhibited dispersive character (n_R1 = 0.27, \(\varphi_z \approx -25^\circ \)).

From Figure 6 it is evident the samples MOC-G and MOC-GO changed to resistive character for low frequencies (for impedance magnitudes higher than 10^5 Ω), compared to the samples MOC and MOC-G+GO. It was caused by free charges when the only one additive was added (graphene electron transport, graphite oxide hole transport throw traps). When the both admixtures were added, the electrons were trapped by the positive states and the conductivity was the same as for pure MOC material.

For better clarity, the structural model characterizing the electric behavior of the studied MOC composites is visualized in Figure 7.

The data of electrical resistivity and capacity calculated using the model presented in Figure 5 is given in Table 6. This data is quite unique as no information on the electrical properties of MOC-based materials is available in literature sources. Due to the addition of graphite oxide, the electrical resistance of material R_s significantly dropped compared to the reference sample, and the capacity C_1 slightly increased. This was assigned to the formation of GO agglomerates that probably increased the overall conductivity of the composite. As anticipated, the use of highly conductive graphene
led to the reduction of electrical resistivity of MOC-G material. By the addition of graphene, two types of electric charge transport took place, namely the transport in MOC material itself, and in graphene nanoplatelets. In the model, it was expressed by the addition of another resistor \((R_2)\) and capacitor \((C_2)\). However, due to the low concentration of graphene particles, the percolation threshold was not exceeded, and the conductive paths between electrodes were not formed. This was also confirmed by SEM. It was the reason why the composite with graphene exhibited slightly higher electrical resistivity comparison with GO modified material. The electrical capacity of MOC-G composite was greater than that of reference material. The electrical parameters of material MOC-G+GO were affected by the electrical behavior of MOC matrix, GO, and graphene. The conductive effect of graphene was balanced with GO which was caused by the compensation of electric charge carriers of graphene (electrons) and positive bonding centers of GO. In this case, the decrease in porosity contributed to the total conductivity drop. The resistivity of electrodes – contact \((R_3)\) was for all samples negligible. Accordingly, the geometrical capacity \((C_3)\) was for all samples similar and much lower than the capacities of tested materials.

There is necessary to remark, in accordance with the theory of dispersive transport of electrical charge carriers which can be described using constant phase element (CPE) model, the values of electrical resistivity and capacity presented above are valid for angular frequency \(\omega = 2\pi f = 1\) rad s\(^{-1}\) only (see Equation \(2\)).

Although the electrical resistivity of a material defines its capability to withstand the transfer of ions subjected to an electrical field, it can be used for the characterization of the microstructure of examined materials, because it is largely dependent on the microstructural parameters of porous space, such as pore size, shape, tortuosity, and depercolation (discontinuity) [64]. Usually, finer pore network with less interconnectivity gives higher electrical resistivity [65]. However, in our case the differences in porosity were for all tested materials low, thus the main effect on the total electrical conductivity of MOC composites had the properties of used nano-additives themselves and their distribution in the fresh mix and hardened samples. As the result, the low porosity composites exhibited lower electrical resistivity compared to the reference material with the highest porosity.

CONCLUSIONS

Graphene- and graphite oxide-reinforced MOC composites were fabricated and analyzed as prospective materials for the construction industry. Based on the presented results, the following conclusions were reached:

- all the samples had highly dense microstructure without any visible defects;
- various MOC phases such as MgO visible as microgranular phase and MOC Phase 5 needle-shape crystals were detected by SEM;
- the needle shape crystals of MOC were interlocked with graphene agglomerates and GO platelets;
- examined composites exhibited low open porosity which further dropped with the incorporation of both nano-additives in composite mix,
- the open porosity in the 2.1 - 3.8 % range greatly limits permeability of explored materials for moisture transport which thus eliminates moisture induced damage that often prohibits use of MOC materials in wet environments;

<table>
<thead>
<tr>
<th>Material</th>
<th>(R_1) (Ω)</th>
<th>(R_2) (Ω)</th>
<th>(R_3) (Ω)</th>
<th>(C_1) (F)</th>
<th>(C_2) (F)</th>
<th>(C_3) (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC</td>
<td>5.2 (\cdot) 10(^8)</td>
<td>–</td>
<td>625</td>
<td>6.0 (\cdot) 10(^{-10})</td>
<td>–</td>
<td>7.0 (\cdot) 10(^{-11})</td>
</tr>
<tr>
<td>MOC-G</td>
<td>5.0 (\cdot) 10(^8)</td>
<td>5.1 (\cdot) 10(^7)</td>
<td>800</td>
<td>6.0 (\cdot) 10(^{-9})</td>
<td>1.5 (\cdot) 10(^{-9})</td>
<td>7.0 (\cdot) 10(^{-11})</td>
</tr>
<tr>
<td>MOC-GO</td>
<td>4.2 (\cdot) 10(^8)</td>
<td>–</td>
<td>1700</td>
<td>7.5 (\cdot) 10(^{-10})</td>
<td>–</td>
<td>4.0 (\cdot) 10(^{-11})</td>
</tr>
<tr>
<td>MOC-G+GO</td>
<td>6.1 (\cdot) 10(^8)</td>
<td>–</td>
<td>700</td>
<td>6.5 (\cdot) 10(^{-10})</td>
<td>–</td>
<td>6.8 (\cdot) 10(^{-11})</td>
</tr>
</tbody>
</table>
• the bulk density and specific density remained almost non-affected by the application of nano-additives in mix composition;

• for the evaluation of the contribution of applied reinforcing nano-additives to the mechanical resistance of fabricated composites, the strength efficiency coefficient was newly formulated, its values were for all composites > 100% which clearly demonstrated the benefits of graphene nanoplatelets and graphite oxide for the enhancement of mechanical resistance of MOC matrix;

• the use graphene nanoplatelets and graphite oxide separately in composite led to the acceleration of transport of electrical charge carriers, on the other hand their combination gave electrical properties similar to those of reference MOC paste.

Acknowledgement

This work was supported by the Czech Science Foundation, grant number 20-01866S and from the grant of Specific university research – grant MSMT no. 20-SVV/2020. The support received from the Brno University of Technology under the project No FCH-S-20-6340 is also greatly acknowledged.

REFERENCES

3. Dinnebier R. E., Freyer D., Bette S., Oestreich M. (2010): 9Mg(OH)₂·MgCl₂·4H₂O, a high temperature phase of the magnesium binder system. Inorganic chemistry, 49 (21), 9770-9776. doi: 10.1021/ic1004566

4. Dinnebier R. E., Oestreich M., Bette, S., Freyer D. (2012): 2Mg(OH)₂·MgCl₂·2H₂O and 2Mg (OH)₂·MgCl₂·4H₂O, two high temperature phases of the magnesium cement system. Zeitschrift für anorganische und allgemeine Chemie, 638 (3-4), 628-633. doi: 10.1002/zaac.201100497

