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In this paper, the effect of the interface properties between the fibre and the matrix on the nonlinear behaviour of long-fibre-
reinforced unidirectional ceramic-matrix mini-composites (mini-CMCs) is investigated. The tensile nonlinear constitutive 
relationship and fatigue loading/unloading constitutive relationship are developed considering the different damage mecha-
nisms of cracking in the matrix, debonding in the interface, and gradually the broken fibres. The relationships of the interface 
properties between the fibre and the matrix, the nonlinear tensile strain, and the fatigue loading/unloading hysteresis loops 
are established. The effects of the interface properties between the fibre and the matrix on the nonlinear tensile and fatigue 
loading/unloading damage evolution are analysed. The nonlinear tensile strain at the damage stage and the fracture strain 
of mini-CMCs decrease with the strong interface properties; and the fatigue loading/unloading hysteresis loops area and 
strain decrease, and the hysteresis modulus increases with the strong interface properties. The experimental tensile stress-
strain curves and fatigue loading/unloading hysteresis loops of the Hi-NicalonTM and TyrannoTM SiC/SiC mini-composites are 
predicted corresponding to the different interface properties.

INTRODUCTION

 Ceramic-matrix composites (CMCs) are new types 
of thermal-structural-functional integrated materials with 
the advantages of metal materials, ceramic materials and 
carbon materials [1]. They have the characteristics of 
material-structural integration. Through the optimisation 
design of each structural unit, synergistic effects can 
be produced, and the high performance and reasonable 
matching of each performance can be achieved. There-
fore, CMCs have high temperature resistance, corrosion 
resistance, wear resistance, a low density, a high specific 
strength and modulus, a low thermal expansion coeffi-
cient, insensitivity to cracks, no catastrophic damage 
and other advantages [2]. Since the 1990s, applications 
of CMCs have already been carried out in Europe and 
the United States on a demonstration and verification 
platform with thrust-to-weight ratios of 8-10 aeroengines 
(i.e., F119, EJ200, F414, M88-III, TRENT 800, etc.). 
The results show that fibre-reinforced CMCs can reduce 
the weight of stationary parts under moderate load by 
more than 50 %, and significantly improve their fatigue 
life. Generally speaking, intermediate-temperature and 
medium-load stationary parts such as a nozzle regulator/

seal have already completed a life-cycle verification 
and entered the stage of practical application and 
batch production; high-temperature and medium-load 
stationary parts, such as a combustion chamber flame 
tube and an inner and outer lining are undergoing a life-
cycle verification and are expected to enter the practical 
application stage; while high-temperature and high-load 
rotating parts such as a turbine rotor and turbine blade 
are still in the exploratory research stage [3, 4].
 The composite materials interface refers to the 
area with significant changes in chemical composition 
between the matrix and the reinforcing phase. The inter- 
face properties between the fibre and the matrix play 
an important role on the mechanical behaviour of fibre-
reinforced CMCs [5, 6]. The interphase transfers the 
load between the fibre and the matrix after interface 
debonding, protects the fibre against an oxidative en-
vironment, and deflects the matrix cracking along the 
interface for the nonlinear behaviour of the CMCs 
[7, 8, 9, 10, 11, 12, 13]. When the fibre/matrix interface 
is strongly bonded, the fibre cannot play the role of 
load carrying, and the fibre-reinforced CMC fractures 
become brittle; and when the fibre/matrix interface is 
weakly bonded, the energy dissipation mechanisms 
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of the interface debonding and fibre pullout are not 
obvious, which limits the nonlinear behaviour of the 
CMC. When the interface bonding between the fibre and 
the matrix is suitable, the reinforcing fibre can transfer 
the load and debonding at a high applied stress, which 
deflects the matrix cracking and increases the energy 
dissipation. The tensile and fatigue loading/unloading 
behaviour is affected by the interface properties (i.e., 
interface shear stress and interface debonding energy) 
between the fibre and the matrix [14, 15, 16, 17, 18, 19, 
20, 21]. Under tensile loading, the tensile stress-strain 
curves of fibre-reinforced CMCs can be divided into four 
different stages, i.e., (1) the linear-elastic stage, and the 
strain increases in direct proportion to the applied stress; 
(2) the damage stage with the matrix cracking and fibre 
debonding occurring at the interface, which makes the 
CMCs appear to have the characteristics of a pseudo-
plastic fracture and high toughness [22]; (3) the damage 
stage with the saturation of the matrix cracking and the 
complete fibre debonding at the interface [23, 24]; and 
(4) gradually, the fibre fracture stage [25, 26]. The tensile 
properties including the elastic modulus, proportional 
limit stress, tensile strength, and fracture strain can be 
obtained through tensile tests, and used for the design of 
the CMC components [27]. Ahn et al. [28] investigated 
the interface deflection/penetration criterion at the fibre 
and the matrix interface using the energy release rate. 
Carrere et al. [29] investigated the matrix cracking de-
flection at the interphase of a mini-SiC/SiC composite 
with a Pyrocarbon (PyC) interphase. The deflection of 
the matrix cracking depends on the interface bond 
strength and interphase type. Sauder et al. [30] investi-
gated the tensile and cyclic loading/unloading beha- 
viour of a mini-SiC/SiC composite with a different inter-
phase. The interphase thickness and the fibre surface 
roughness affect the tensile nonlinear and fracture strain 
of the mini-CMCs due to the different interface debonding 
conditions. Yu et al. [31] investigated the effect of the 
SiC coating thickness on the mechanical behaviour of 
a SiC/SiC composite. The flexural strength of a SiC/
SiC composite initially increased with the SiC coating 
thickness and reached a peak value, and then decreased 
rapidly, however, the bending modulus increased with 
the SiC coating thickness. Kabel et al. [32] investigated 
the relationship between the the PyC interphase pro-
perties and the debonding shear strength of a SiC/SiC 
composite. Pryce and Smith [33] investigated the quasi-
static tensile behaviour of a unidirectional and cross-ply 
SiC/CAS composite at room temperature and monitored 
the evolution of the matrix cracking. Based on the shear-
lag model and experimental matrix cracking density, 
the tensile stress-strain curve of the unidirectional 
SiC/CAS composite was predicted [34]. Chateau et al. 
[35] investigated the damage evolution of a unidirec-
tional SiC/SiC mini-composite using a 1D probabilistic 
model. The interfacial parameters are obtained by fitting 
the experimental characterisation. Morscher et al. [36] 

investigated the stress-dependent matrix cracking evo- 
lution of a 2D woven SiC/SiC composite, and the rela-
tionship for the stress-dependent matrix cracking could 
be related to the stress in the load-bearing CVI SiC 
matrix. Li et al. [37] developed a micromechanical model 
to predict the tensile behaviour of a unidirectional C/SiC 
composite, and established the relationship between the 
tensile curve and the internal damage mechanisms of the 
matrix cracking, interface debonding, and fibre failure. 
Li et al. [38] investigated the cyclic loading/unloading 
tensile behaviour of a unidirectional C/SiC composite 
at room temperature. The effect of the fibre failure on 
mechanical hysteresis loops was considered. Li [39, 40] 
investigated the cyclic loading/unloading hysteresis 
loops of a cross-ply SiC/MAS composite under the out-
of-phase thermomechanical fatigue loading. The rela- 
tionships between the phase angle, hysteresis loops, 
loading sequence, and environment temperature were 
established. The mini-composites (unidirectional com-
posites containing a single bundle of fibres) were used 
to study the nonlinear behaviour of CMCs for different 
damage mechanisms [41, 42, 43]. The effect of the in-
terface properties on the frictional heating [44, 45, 46], 
fatigue damage evolution [47, 48, 49, 50, 51, 52, 53, 54], 
and electrical resistance [55, 56] of unidirectional 
SiC/CAS, 2D SiC/SiC composites were investigated. 
The interface properties affect the tensile and fatigue 
behaviour of the fibre-reinforced CMCs, especially the 
nonlinear tensile behaviour and the mechanical hysteresis 
loops. It is necessary to perform the investigations on 
the effect of the interface properties on the tensile and 
fatigue behaviour of the fibre-reinforced CMCs, in 
order to establish the relationships between the interface 
properties and the mechanical behaviour of the CMCs.
 In this paper, the nonlinear behaviour of mini-CMCs 
for different interface properties subjected to tensile and 
fatigue loading/unloading is investigated. The nonlinear 
constitutive models for the tensile and fatigue loading/
unloading hysteresis loops are developed considering the 
different damage mechanisms and interface properties. 
The effect of the interface properties on the nonlinear 
strain and fracture strain under tensile loading, fatigue 
loading/unloading hysteresis loops area, strain, and 
modulus is discussed. The experimental tensile strain 
and fatigue loading/unloading hysteresis loops of the 
Hi-NicalonTM and TyrannoTM SiC/SiC mini-composites 
with different interphase properties are predicted.

EXPERIMENTAL

 The Hi-NicalonTM S (Nippon Carbon Co. Ltd., 
Takauchi, Japan) and Tyranno SA3 (UBE Industries, 
Tokyo, Japan) tows reinforced SiC matrix (SiC/SiC) 
mini-composites were fabricated using the chemical 
vapour infiltration (CVI) method. The SiC tows were 
coated with a single layer of pyrocarbon (PyC) with 



Li L., Zhang Z., Liu Y.

350 Ceramics – Silikáty  64 (3) 348-364 (2020)

a thickness of 30 or 150 nm, and a multilayer of PyC and 
SiC with a thickness of 150 nm. The tensile and cyclic 
loading/unloading experimental results were performed 
and obtained per Sauder et al. [30]. The tensile and 
cyclic loading/unloading tests were performed at room 
temperature at a constant strain rate of 50 μm min-1. 
The deformations of the mini-composite were measured 
using two-parallel linear-variable differential transfor-
mer extensometers.

THEORETICAL

 In the present analysis, the constitutive models for 
the tensile and fatigue loading/unloading of the mini-
CMCs have been developed considering the multiple 
damage mechanisms and interface properties. The sto-
chastic matrix cracking model, fracture mechanics 
approach, and Global Load Sharing (GLS) criterion are 
used to determine the space between the matrix cracking, 
fibre debonding length, fibre failure probability and in-
tact fibre stress, respectively. Under fatigue loading/
unloading, the repeated sliding at the interface is taken 
into consideration for the mechanical hysteresis loops.

Tensile constitutive model

 Under tensile loading, the nonlinear aspect of the 
CMCs is caused by the different damage mechanisms. In 
order to establish the nonlinear tensile constitutive model 
of the CMCs, the micro stress field of the fibre, matrix 
and the interface along the fibre direction for the multiple 
damage status should be analysed. When damage occurs, 
a unit cell is extracted from the mini-CMCs, as shown in 
Figure 1. The shear-lag model can be used to analyse the 
micro stress field of the damaged composite [57]. The 
fibre axial stress distribution can be determined using 
Equation 1 for the different damage regions [37].

(1)

where rf denotes the fibre radius; ld denotes the interface 
debonding length and can be determined using the frac-
ture mechanics approach [37]; lc denotes the matrix 
crack spacing and can be determined using the stochastic 
matrix cracking model [37]; σfo denotes the fibre axial 
stress in the interface bonding region; ρ denotes the 
shear-lag model parameter; τi denotes the interface shear 
stress; and Φ denotes the intact fibre stress.

(2)

(3)

where Vm denotes the matrix volume; Em denotes the 
matrix elastic modulus; Ec denotes the composite elastic 
modulus; ζd denotes the interface debonding energy; 
lsat denotes the saturation matrix crack spacing; σm de-
notes the matrix stress; σR denotes the matrix cracking 
characteristic stress; and m denotes the matrix Weibull 
modulus.
 Considering multiple damage mechanisms, the non- 
linear constitutive relationship of the mini-CMCs can be 
determined using the following equation [37]:

(4)

where αf and αc denote the fibre and the composite 
thermal expansion coefficient, respectively; and ΔT de-
notes the temperature difference between the testing and 
fabricated temperature.

Fatigue loading/unloading
constitutive model

 Under fatigue loading/unloading, the interface da-
mage status affects the mechanical hysteresis loops. The 
fatigue loading/unloading constitutive model can be 
divided into two cases, i.e., (1) the partial debonding at 
the fibre interface; and, (2) the complete debonding at 
the fibre interface.
 For the partial debonding at the fibre interface, the 
fatigue loading/unloading constitutive relationship can 
be determined using the following equations. [38]

(5)
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Figure 1.  The unit cell of the shear-lag model.

2 exp , / 2+ Φ − − − �x l l
( )

[ ]

[ ]

i

d

f

f

d d

fo fo i d c

f f

2
0x x l

r
x

l x l
r r

�

�
� � � �

�� � �� ��
�

= � � � � ��� � � � �� � � � ��

,

,

2 exp , / 2+ Φ − − − �x l l
( )

[ ]

[ ]

i

d

f

f

d d

fo fo i d c

f f

2
0x x l

r
x

l x l
r r

�

�
� � � �

�� � �� ��
�

= � � � � ��� � � � �� � � � ��

,

,

unloading c f� � �
y l y l l2 2� � �

� � � � � ��
( )( )

( )
2

d d ci i

f f f c f f c

4U y
E E r l E r l

� ��

unloading c f� � �
y l y l l2 2� � �

� � � � � ��
( )( )

( )
2

d d ci i

f f f c f f c

4U y
E E r l E r l

� ��

( )

2

d d fo c di f

c d fo i

f c f f c f c f c f

c d

c f

f

2 2 2 21
2

2

/ 2
exp 1

l l l lrl
E l E r l E l E l r

l l
r

��� � �
�

� � �

� �� � �� � � � � � � �� �� �
� � � �

� �� ��
��������������������� � � � � ��
 	� �

� �� �

( )

2

d d fo c di f

c d fo i

f c f f c f c f c f

c d

c f

f

2 2 2 21
2

2

/ 2
exp 1

l l l lrl
E l E r l E l E l r

l l
r

��� � �
�

� � �

� �� � �� � � � � � � �� �� �
� � � �

� �� ��
��������������������� � � � � ��
 	� �

� �� �
( )

2

d d fo c di f

c d fo i

f c f f c f c f c f

c d

c f

f

2 2 2 21
2

2

/ 2
exp 1

l l l lrl
E l E r l E l E l r

l l
r

��� � �
�

� � �

� �� � �� � � � � � � �� �� �
� � � �

� �� ��
��������������������� � � � � ��
 	� �

� �� �

( )

2

d d fo c di f

c d fo i

f c f f c f c f c f

c d

c f

f

2 2 2 21
2

2

/ 2
exp 1

l l l lrl
E l E r l E l E l r

l l
r

��� � �
�

� � �

� �� � �� � � � � � � �� �� �
� � � �

� �� ��
��������������������� � � � � ��
 	� �

� �� �

2

f m m f f m m f

d d2

f c i c i

1

2 2

r V E r rV E El
V E E

� �
� � � �

� � � �
� � � �� � � �

� �� �

1

m

c sat

R

1 exp

m

l l �
�

�
� �� �� �� �� �� � �� �� �

� �� �� � �� 




Effect of interface properties on the nonlinear behaviour of long-fibre-reinforced unidirectional ceramic-matrix mini-composites...

Ceramics – Silikáty  64 (3) 348-364 (2020) 351

(6)

where εunloading denotes the unloading strain; and εreloading 
denotes the reloading strain; ΦU and ΦR denote the intact 
fibres stress upon unloading and reloading, respectively; 
and y and z denote the interface counter-slip length and 
new-slip length, respectively.
 For the complete debonding at the fibre interface, 
the fatigue loading/unloading constitutive relationship 
can be determined using the following equations [38]:

(7)

(8)

RESULTS AND DISCUSSION

 The interface properties affect the nonlinear me-
chanical behaviour of the CMCs, especially subjected 
to the tensile and fatigue loading/unloading conditions. 
For the CMCs, the interface properties can be charac-
terised using two parameters of the interface shear stress 
and the interface debonding energy. In this section, 
the effects of the interface properties on the nonlinear 
behaviour of the mini-CMCs subjected to the tensile and 

fatigue loading/unloading are analysed. The Hi-Nica-
lonTM Type S SiC/SiC mini-composite was used for the 
case analysis, and the material properties are given by 
[30]: Vf = 44 %, Ef = 372 GPa, Em = 550 GPa, rf = 6.5 μm, 
αf = 4.5 × 10-6/°C, αm = 4.6 × 10-6/°C, ∆T = ‒1000 °C, 
ζd = 0.1 J∙m-2, τi = 20 MPa.

Effect of the interface properties 
on tensile nonlinear strain

 Li and Song [59] developed an approach to estimate 
the interface shear stress of fibre-reinforced CMCs using 
hysteresis loops. The range of the interface shear stress 
of a unidirectional SiC/CAS composite is between τi =10 
and 30 MPa. The effect of the interface shear stress (i.e., τi 
= 10, 20, and 30 MPa) on the tensile nonlinear strain and 
the interface debonding of the SiC/SiC mini-composite 
is shown in Figure 2. When the interface shear stress 
increases from τi = 10 MPa to τi = 30 MPa, the composite 
strain corresponding to the different damage stages of 
matrix cracking, interface debonding, and fibre failure 
decreases, and the composite failure strain decreases, 
due to the decrease in the interface debonding length. 
When the interface shear stress increases, the stress 
transfer between the fibre and the matrix increases, and 
the resistance to the interface debonding also increases, 
leading to a decrease in the interface debonding length 
and the nonlinear tensile strain [58]. The composite 
failure strain decreases from εf = 0.58 % at τi = 10 MPa 
to εf = 0.47 % at τi = 30 MPa. The interface complete 
debonding stress increases with the interface shear 
stress. The interface complete stress increases from σ = 
660 MPa at τi = 10 MPa to σ = 737 MPa at τi = 20 MPa.
 Vagaggini et al. [60] investigated the constituent 
properties of fibre-reinforced CMCs using hysteresis 
loops. It was found that the value of the interface de-
bonding energy is ζd = 0 ~ 5 J∙m-2. The effect of the 
interface debonding energy (i.e., ζd = 1, 2, and 3 J∙m-2) 
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Figure 2.  The effect of the interface shear stress on: a) the tensile stress-strain curves; b) the interface debonding length versus the 
applied stress curves of the Hi-NicalonTM Type S SiC/SiC mini-composite.
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on the tensile nonlinear strain and the interface debon-
ding of the SiC/SiC mini-composite is shown in Figure 3. 
When the interface debonding energy increases from 
ζd = 1 J∙m-2 to ζd = 3 J∙m-2, the composite strain corres-
ponding to the different damage stages decreases, and the 
composite failure strain decreases, due to the decrease 
in the interface debonding length. When the interface 
debonding energy increases, the energy needed for the 
interface debonding increases, leading to a decrease in 
the interface debonding length, and a decrease in the 
nonlinear strain. The composite failure strain decreases 
from εf = 0.53 % at ζd = 1 J∙m-2 to εf = 0.4 % at ζd = 
= 3 J∙m-2. At the same applied stress of σ = 780, the 
interface debonding length decreases from 2ld/lc = 1.0 at 
ζd = 1 J∙m-2 to 2ld/lc = 0.38 at ζd = 3 J∙m-2.

Effect of the interface properties on
the fatigue loading/unloading

hysteresis loops

 The effect of the interface shear stress (i.e., τi = 10, 
20, and 30 MPa) on the fatigue loading/unloading 
hysteresis loops and the interface slip of the SiC/SiC 
mini-composite under the peak stress of σmax = 500 MPa 
is shown in Figure 4. When the interface shear stress 
increases from τi = 10 MPa to τi = 30 MPa, the fatigue 
loading/unloading hysteresis loops area, peak and valley 
strain decrease, and the fatigue loading/unloading 
hysteresis modulus increases, due to the decrease in the 
interface slip length. When the interface shear stress 
increases, the resistance to the interface debonding in-
creases, leading to a decrease in the interface debonding 
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Figure 3.  The effect of the interface debonding energy on: a) the tensile stress-strain curves; b) the interface debonding length 
versus the applied stress curves of the Hi-NicalonTM Type S SiC/SiC mini-composite.

Figure 4.  The effect of the interface shear stress on: a) the fatigue loading/unloading hysteresis loops; b) the interface slip lengths 
versus the applied stress curves of the Hi-NicalonTM Type S SiC/SiC mini-composite.
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and slip length, and a decrease in the area, peak and 
valley strain of the fatigue loading/unloading hysteresis 
loops. Under the peak stress of σmax = 500 MPa, the 
interface slip range decreases from 40 % of the matrix 
crack spacing at τi = 10 MPa to 13 % of the matrix crack 
spacing at τi = 30 MPa.
 The effect of the interface debonding energy (i.e., 
ζd = 1, 3, and 5 J∙m-2) on the fatigue loading/unloading 
hysteresis loops and the interface slip of the SiC/SiC 
mini-composite under the peak stress of σmax = 800 MPa 
is shown in Figure 5. When the interface debonding 
energy increases from ζd = 1 J∙m-2 to ζd = 5 J∙m-2, the 
fatigue loading/unloading hysteresis loops area, peak and 
valley strain decrease, and the fatigue hysteresis modulus 
increases, due to the decrease in the interface slip length. 
When the interface debonding energy increases, the 
energy needed for the interface debonding increases, 
leading to a decrease in the interface debonding length, 
and a decrease in the area, peak and valley strain of the 

fatigue loading/unloading hysteresis loops. Under the 
peak stress of σmax = 800 MPa, the interface slip range 
decreases from 38 % of the matrix crack spacing at 
ζd = 1 J∙m-2 to 20 % of the matrix crack spacing at 
ζd = 5 J∙m-2.

EXPERIMENTAL

 Sauder et al. [30] performed investigations on the 
effect of the tensile and cyclic loading/unloading tensi-
le behaviour of SiC/SiC mini-composites with different 
interface properties. The material properties of the 
Hi-NicalonTM and TyrannoTM SiC/SiC mini-composites 
are listed in Table 1. The tensile nonlinear strain, matrix 
cracking evolution, fatigue loading/unloading hystere-
sis loops, and the interface debonding and slip of Hi-
NicalonTM and TyrannoTM SiC/SiC minicomposites are 
predicted considering the different interface properties.

Table 1.  The material properties of the unidirectional SiC/SiC mini-composites.

Items
 Type A Hi-NicalonTM Type B Hi-NicalonTM Type C Hi-NicalonTM TyrannoTM SA3

 S SiC/SiC S SiC/SiC S SiC/SiC SiC/SiC

Interphase
 PyC PyC/SiC/PyC/SiC/PyC PyC PyC

 (150 nm) (150 nm) (30 nm) (150 nm)
rf (μm) 6.5 6.5 6.5 3.5
Vf (%) 46 44 40 43
Ef (GPa) 372 372 372 387
Em (GPa) 400 550 550 400
αf (10-6/°C) 3.5 4.5 4.5 4
αm (10-6/°C) 4.6 4.6 4.6 4.6
τi (MPa) 9 20 10 100
ζd (J∙m-2) 0.1 0.3 0.1 0.1
σUTS (MPa) 940 878 860 1116
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Figure 5.  The effect of the interface debonding energy on: a) the fatigue loading/unloading hysteresis loops; d) the interface slip 
lengths versus the applied stress curves of the Hi-NicalonTM Type S SiC/SiC mini-composite.
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Tensile nonlinear strain and fatigue
loading/unloading hysteresis loops of

the Type A Hi-NicalonTM Type S 
SiC/SiC mini-composite

 The experimental and predicted tensile nonlinear 
strain, matrix cracking evolution, fatigue loading/un-
loading hysteresis loops, and interface debonding and 
sliding of the Type A Hi-NicalonTM Type S SiC/SiC mini-
composite are shown in Figures 6-9 and Table 2.
 Under tensile loading, the tensile stress-strain curve 
of the SiC/SiC mini-composite is predicted using the 
tensile constitutive model of Equation 4, which exhibits 
obvious nonlinear behaviour between the first matrix 
cracking stress of about σmc = 400 MPa and the saturation 
matrix cracking stress of about σsat = 800 MPa, and the 
composite tensile strength is about σUTS = 940 MPa with 
the failure strain of εf = 0.64 %, as shown in Figure 6a. 

The matrix cracking density is predicted using Equation 
3 and increases from λmc = 0.24/mm at σmc = 400 MPa 
to the saturation matrix cracking density of λsat = 2.85 mm-1 
at σsat = 800 MPa, as shown in Figure 6b.

Table 2.  The tensile nonlinear strain and fatigue loading/un-
loading hysteresis loops of the Type A Hi-NicalonTM Type S 
SiC/SiC mini-composite.

             Tensile

Items σmc σsat σUTS εf λmc λsat

 (MPa) (MPa) (MPa) (%) (mm-1) (mm-1)
Value 400 800 940 0.64 0.24 2.85

             Fatigue

Items σmax 2ld/lc y(z)/ld
 σtr_fu σtr_fr

 (MPa)   (MPa) (MPa)
 500 0.56 0.86 – –
Value 800 1.0 1.0 400 400
 850 1.0 1.0 467.5 382.5
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Figure 6.  The experimental and predicted tensile stress-strain curves (a) and the experimental and predicted matrix cracking den-sity versus 
the applied stress curves of the Type A Hi-NicalonTM Type S SiC/SiC mini-composite (b).

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

300 500 700400 600 800 900 1000
Stress (MPa)

Experimental data
Present analysisM

at
rix

 c
ra

ck
in

g 
de

ns
ity

 (m
m

-1
)

b)

0

100

200

300

400

500

600

0 0.2 0.40.1 0.3 0.5 0.6
Strain (%)

Experimental data
Present analysis

St
re

ss
 (M

Pa
)

a)

Figure 7.  The experimental and predicted fatigue loading/unloading hysteresis loops(a) and the experimental and predicted inter-face slip length 
versus the applied stress curves of the Type A Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 500 MPa (b).
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 Under fatigue loading/unloading, the interface par-
tially debonds (i.e., 2ld/lc = 0.56), and the fibre partially 
slides relative to the matrix in the interface debonding 
region (i.e., y(z)/ld = 0.86) under the peak stress of 
σmax = 500 MPa, and the interface debonding length is 
determined using Equation 2, and the fatigue loading/
unloading hysteresis loop is predicted by Equations 5 
and 6, as shown in Figure 7; and under the peak stress of 
σmax = 800, and 850 MPa, the fibre/matrix interface com-
pletely debonds (i.e., 2ld/lc = 1), and the fibre completely 
slides relative to the matrix at the matrix crack spacing 
(i.e., y(z)/ld = 1), and the interface debonding length is 
determined using Equation 2, and the fatigue loading/un- 
loading hysteresis loop is predicted by Equations 7 and 
8, as shown in Figures 8 and 9.
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Figure 8.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted inter-face slip length 
versus the applied stress curves of the Type A Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 800 MPa (b).

0

0.2

0.4

0.6

0.8

1.0

1.2

0 400 800200 600
Stress (MPa)

y
z

2y
(z

)/l
c

b)

Table 3.  The tensile nonlinear strain and fatigue loading/un-
loading hysteresis loops of the Type B Hi-NicalonTM Type S 
SiC/SiC mini-composite.

             Tensile

Items σmc σsat σUTS εf λmc λsat

 (MPa) (MPa) (MPa) (%) (mm-1) (mm-1)
Value 350 780 878 0.54 1.1 4.5

             Fatigue

Items σmax 2ld/lc y(z)/ld
 σtr_fu σtr_fr

 (MPa)   (MPa) (MPa)
 632 0.32 0.88 – –
 699 0.6 0.84 – –
 724 1.0 0.55 – –
Value 778 1.0 0.79 – –
 837 1.0 1.0 41.8 795.2
 878 1.0 1.0 175.6 702.4
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Figure 9.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted inter-face slip 
lengths versus the applied stress curves of the Type A Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 850 MPa (b).
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Tensile nonlinear strain and fatigue
loading/unloading hysteresis loops of

the Type B Hi-NicalonTM Type S 
SiC/SiC mini-composite

 For the Type B Hi-NicalonTM Type S SiC/SiC mi-
ni-composite, the experimental and predicted tensile 
nonlinear strain, and matrix cracking evolution are 
shown in Figure 10 and Table 3. The tensile stress-strain 
curve is predicted using the tensile constitutive model of 
Equation 4, which exhibits obvious nonlinear behaviour 
between the first matrix cracking stress of σmc = 350 MPa 
and the saturation matrix cracking stress of σsat = 780 MPa, 
and the composite tensile strength is about σUTS = 878 MPa 
with the failure strain of εf = 0.54 %. The matrix cracking 
density is predicted using Equation 3 and increases 
from λmc = 1.1 mm-1 at σmc = 600 MPa to λsat = 4.5 mm-1 at 
σsat = 875 MPa.

 The experimental and predicted fatigue loading/un-
loading hysteresis loops and interface slip under the peak 
stresses of σmax = 632, 669, 724, 778, 837, and 878 MPa 
are shown in Figures 11-16 and Table 3. Upon unloading 
and reloading, the interface partially debonds and the 
fibre partially slides relative to the matrix under the peak 
stresses of σmax = 632 and 669 MPa, and the interface 
debonding length is determined using Equation 2, and 
the fatigue loading/unloading hysteresis loop is predicted 
by Equations 5 and 6; the interface completely debonds 
and the fibre partially slides relative to the matrix under 
the peak stresses of σmax = 724 and 778 MPa, and the 
interface debonding length is determined using Equa-
tion 2, and the fatigue loading/unloading hysteresis loop 
is predicted by Equations 7 and 8; and the interface 
completely debonds and the fibre completely slides 
relative to the matrix under the peak stresses of σmax = 
= 837 and 878 MPa, and the interface debonding length 
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Figure 10.  The experimental and predicted tensile stress-strain curves (a) and the experimental and predicted matrix cracking density versus 
the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite (b).

Figure 11.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 632 MPa (b).
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is determined using Equation 2, and the fatigue loading/
unloading hysteresis loop is predicted by Equations 7 
and 8.

Tensile nonlinear strain and fatigue
loading/unloading hysteresis loops of

the Type C Hi-NicalonTM Type S 
SiC/SiC mini-composite

 For the Type C Hi-NicalonTM Type S SiC/SiC mini-
composite, the tensile stress-strain curve is predicted 
using the tensile constitutive model of Equation 4. 
The nonlinear tensile strain starts from the first matrix 
cracking stress of σmc =300 MPa, and the composite tensi-
le strength is about σUTS = 860 MPa with the failure strain 
of εf = 0.62 %. The matrix cracking density is predicted 
using Equation 3 and increases from λmc = 0.02 mm-1 
at σmc = 300 MPa to λ = 5.8/mm at σsat = 850 MPa, as 

shown in Figure 17 and Table 4. When the fatigue peak 
stress increases from σmax = 485 MPa to σmax = 743 MPa, 
the interface completely debonds and the fibre sliding 

Table 4.  The tensile nonlinear strain and fatigue loading/un-
loading hysteresis loops of the Type C Hi-NicalonTM Type S 
SiC/SiC mini-composite.

             Tensile

Items σmc σsat σUTS εf λmc λsat

 (MPa) (MPa) (MPa) (%) (mm-1) (mm-1)
Value 300 850 860 0.62 0.02 5.8

             Fatigue

Items σmax 2ld/lc y(z)/ld
 σtr_fu σtr_fr

 (MPa)   (MPa) (MPa)
 485 1.0 0.824 – –
 569 1.0 1.0 28.5 540.5Value

 662 1.0 1.0 264.8 397.2
 743 1.0 1.0 334.3 408.7
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Figure 12.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 669 MPa (b).

Figure 13.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 724 MPa (b).
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range increases from a partial slip (i.e., y(z)/ld < 1) to 
a complete slip (i.e., y(z)/ld = 1), and the interface 
debonding length is determined using Equation 2, and 
the fatigue loading/unloading hysteresis loop is predicted 
by Equations 5 and 6, as shown in Figures 18-21 and 
Table 4.

Tensile nonlinear strain and fatigue
loading/unloading hysteresis loops of

the TyrannoTM SA3 SiC/SiC
mini-composite

 For the TyrannoTM SA3 SiC/SiC mini-composite, 
the tensile nonlinear strain is predicted using the tensile 
constitutive model of Equation 4 and evolves from the 
first matrix cracking stress of σmc = 600 MPa to the 
saturation matrix cracking stress of σsat = 1000 MPa, and 
the corresponding matrix cracking density is predicted 

using Equation 3 and evolves from λmc = 1.6 mm-1 to 
λsat = 25 mm-1, and the composite tensile strength is about 
σUTS = 1116 MPa with the failure strain of εf = 0.58 %, 
as shown in Figure 22 and Table 5. Under the peak 
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Figure 14.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 778 MPa (b).

Figure 15.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 837 MPa (b).
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Table 5.  The tensile nonlinear strain and fatigue loading/un-
loading hysteresis loops of the TyrannoTM SA3 SiC/SiC mini-
composite.

             Tensile

Items σmc σsat σUTS εf λmc λsat

 (MPa) (MPa) (MPa) (%) (mm-1) (mm-1)
Value 600 1000 1116 0.58 1.6 25

             Fatigue

Items σmax 2ld/lc y(z)/ld
 σtr_fu σtr_fr

 (MPa)   (MPa) (MPa)
 884 0.27 0.83 – –
Value 933 0.45 0.78 – –
 985 0.63 0.73 – –
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stresses of σmax = 884, 933, and 985 MPa, the interface 
debonds partially (i.e., 2ld/lc = 0.27, 0.45, and 0.63), and 
the fibre slides partially relative to the matrix (i.e., y(z)/
ld = 0.83, 0.78, and 0.73), and the interface debonding 
length is determined using Equation 2, and the fatigue 
loading/unloading hysteresis loop is predicted by Equa-
tions 5 and 6, as shown in Figures 23-25 and Table 5.

CONCLUSION

 In this paper, the tensile nonlinear strain and the fatigue 
loading/unloading hysteresis loops of the long-fibre-
reinforced unidirectional mini-CMCs were investigated 
for different interface properties. The nonlinear tensile 
constitutive model and the fatigue loading/unloading 
constitutive model were developed considering different 
damage mechanisms. The relationships between the 

interface properties, tensile nonlinear strain, and fatigue 
loading/unloading hysteresis loops were established. The 
effects of the interface properties on the tensile damage 
and the fracture, fatigue loading/unloading hysteresis 
loops area, strain, and modulus were analysed. When 
the interface shear stress or interface debonding energy 
increases, the interface debonding length and slip length 
decrease, leading to a decrease in the tensile damage and 
failure strain, and the area, peak and residual strain of 
the fatigue loading/unloading hysteresis loops, and an 
increase in the fatigue hysteresis modulus. The tensile 
damage and fracture, and the fatigue loading/unloading 
hysteresis loops of the Hi-NicalonTM and TyrannoTM 
SiC/SiC mini-composites with the different interface 
properties were analysed. The experimental matrix 
cracking evolution, tensile nonlinear strain, and fatigue 
loading/unloading hysteresis loops were predicted, and 
related to the interface debonding and slip condition. 
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Figure 16.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type B Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 878 MPa (b).

Figure 17.  The experimental and predicted tensile stress-strain curves (a) and the experimental and predicted matrix cracking density versus the 
applied stress curves of the Type C Hi-NicalonTM Type S SiC/SiC mini-composite (b).
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Figure 20.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type C Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 662 MPa (b).

Figure 19.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type C Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 569 MPa (b).
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Figure 18.  The experimental and predicted hysteresis loops (a) and the experimental and predicted interface slip lengths versus the applied stress 
curves of the Type C Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of σmax = 485 MPa (b).
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Figure 23.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the TyrannoTM SA3 SiC/SiC mini-composite under the peak stress of σmax = 884 MPa (b).

Figure 22.  The experimental and predicted tensile stress-strain curves (a) and the experimental and predicted matrix cracking density versus the 
applied stress curves of the TyrannoTM SA3 SiC/SiC mini-composite (b).
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Figure 21.  The experimental and predicted fatigue loading/unloading hysteresis loops (a) and the experimental and predicted interface slip length 
versus the applied stress curves of the Type C Hi-NicalonTM Type S SiC/SiC mini-composite under the peak stress of  σmax = 743 MPa (b).
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In the present analysis, there are significant differences 
between the modelling and experimental data of the 
matrix cracking density evolution curves. However, the 
experimental matrix cracking evolution is monitored 
using the the acoustic emission method, which may take 
the fibre/matrix interface debonding and the fibre failure 
signals of the matrix cracking into account, leading to 
the differences between the experimental and predicted 
results.
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