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A fly ash-based alkali-activated material (FAAM) is an important member of the alkali-activated geopolymeric family. The 
compressive strength is one of most important mechanical properties for FAAMs in its use as a construction material. The 
effects of the components of the precursors from fly ash, an alkali-activator, or additives on the compressive strengths 
of FAAMs have been reviewed. The SiO2/Al2O3, Al2O3/Na2O, and water/solid (W/S) ratios are crucial in developing the 
compressive strengths of FAAMs. The strength map, as a function of the change in the SiO2/Al2O3 and SiO2/Na2O ratios has 
been established. There is a critical value of the SiO2/Al2O3 ratio at about 4.20 to 4.30, in which the increase or decrease of 
the compressive strengths at a constant SiO2/Al2O3 ratio with various Al2O3/Na2O ratios is found. The active CaO resource, 
originating from a ground blast-furnace slag (GBFS), ordinary Portland cement (OPC), or chemical agents, such as Ca(OH)2 

or CaO, is of benefit to the improvement in the strength of FAAMs: however, to avoid the dominant formation of C–A–S–H, 
N–C–A–S–H, and C–S–H gels instead of N–A–S–H and A–S–H gels, an optimal addition of 7.5 % to 10 % OPC and a 15 % 
to 20 % GBFS replacement is recommended by considering the setting time, workability, and strength development. The 
effects of Fe2O3 in the fly ash and the silica on the compressive strengths of the FAAMs are also generalised.

INTRODUCTION

 Alkali-activated materials (AAMs) are environ-
mentally-friendly binders, which are fabricated by the 
reaction between alkali metal sources and a solid sili-
cate, calcium silicate, or aluminosilicate powder. During 
recent years, much research has been undertaken and 
AAMs have undergone many scientific advances [1-3]. 
The precursor materials of binders have also been ex-
panded upon [4, 5]. In fact, any materials could serve 
as precursors for the binders provided that they contain 
proper amounts of silica and alumina. Waste materials 
or industrial by-products, such as GBFS [6-10], red mud 
[1, 11], fly ash [12-15], lignite bottom ash [16], recycled 
glass [17], ceramic dust waste [18], slag waste from 
metallurgical industries [19], etc. have been used as 
precursors to synthesise binders [20-22]. Among these 
different types of waste, fly ash is by far the most inte-
resting, because of its suitable chemical composition, 
easy availability, and ready availability in a fine powder 
form [14, 17, 23-27].
 Fly ash is known as pulverised fuel ash generated 
through the combustion of coal powders. It contains 
amorphous silica and alumina, and some calcium com- 
pounds, magnesia and ferric oxide, which varies no-

ticeably for different coal minerals and combustion pro-
cesses [28]. Although fly ash has found many different 
options to be put into practice, only a small fraction of 
the fly ash has been managed efficiently [25, 28]. It is 
a better choice for fly ash to be used as a resource in the 
fabrication of binders by alkaline activation, because: 
(I) fly ash embraces the alumina-silicate chain essen-
tially needed by the geopolymerisation; (II) there are less 
strict requirements for fly ash, compared to those used in 
OPC and (III) fly ash can be effectively used, in which, 
as much as 80 % or even 100 % of the fly ash can be 
added to fabricate the binders. Therefore, fly ash-based 
alkaline activated materials (FAAMs) have undergone 
a rapid upswing since they were reported several deca-
des ago [23, 25, 29-31]. The curing processes, the ratios 
of SiO2/Al2O3, SiO2/Na2O, Na2O/Al2O3, and CaO/Al2O3, 
the content of the alkaline activator, and the various 
fly ashes, have been extensively studied: however, the 
effects of the different parameters on the properties of 
AFFMs are complex and it is difficult to predict which 
one is more important [32-35]. Besides, for any of the 
parameters, different results or even the opposite results 
can often be observed. Thus, it is necessary to explore 
the fundamentals of how the parameters determine the 
properties of FAAMs. Although there are some review 
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papers in the literature regarding AAMs in recent years, 
in which, the structural techniques, the precursors and 
their characteristics, silicate waste, the effects of fibres, 
chemical admixtures and mineral admixtures have been 
reviewed [2, 17, 36-47], there are few papers main-
ly aimed at the development of fly ash-based AAMs 
[43, 46]. In this paper, the effects of the components on 
the compressive strengths of AAMs prepared by fly ash 
as a main resource material were reviewed, in which, 
the ranges of the components in the binders and their 
fundamental roles on FAAMs were generalised. 

DISCUSSION

The role of the alkaline activator

 Alkaline activation is the first step in the fabrica-
tion of FAAMs. By the alkaline activation, Si4+, Al3+ and 
other ions are dissolved from the fly ash and passed into 
the solution, therefore, the role of the alkaline activator 
is primarily important. At NaOH contents of 5, 6, 7, 8 
and 10 % relative to the binder, compressive strengths 
of 9, 21, 30, 31 and 50 MPa at 28 days were observed, 
respectively [48]. In another FAAM cured at 70 °C for 
24 h, as the Na2O content increased from 4 to 8 %, the 

strength at 28 days was increased by 629 % [49]. Ryu 
et al. [50] reported that the strength at 28 days at an Na2O 
content of 7.8 % was improved by more than 1.7 times 
compared to that at 6.3 % in an FAAM mortar. Similar 
results were also obtained by some other authors [51-57]. 
 There were differences of opinions as to the most 
effective amount leading to the maximum compressive 
strength [48, 53, 58]. Fernandez-Jimenez et al. [48] pro-
posed that the addition of Na2O with 14 % of fly ash led to 
the optimum mechanical properties. In another FAAM 
paste, the optimal Na2O content was 10 % of fly ash by 
mass [59]. According to the results of Williamson et al. 
[53], however, the FAAM mortar prepared with 4.5 % 
NaOH exhibited the highest strength at 28 days. Thus, 
it is difficult to identify the effectiveness of different 
Na2O contents. In fact, as alkaline activators are added 
to the fly ash, the alkaline content can change the SiO2/
Al2O3, Al2O3/Na2O and SiO2/Na2O ratios, as well as the 
W/S ratio. The increase in the Na2O or NaOH content 
decreases the SiO2/Na2O and Al2O3/Na2O ratios. If the 
alkaline activators include water glass, the SiO2/Al2O3 
ratio also changes. It seems that it is more reasonable 
to expect the compressive strength to vary with the 
SiO2/Al2O3, or SiO2/Na2O ratio than by the NaOH or 
Na2O content only.

Table 1.  The components of the FAAM pastes and their properties.

Binders (g) Activator (to binders) (g) Curing process
SiO2/Al2O3 Al2O3/Na2O

Compressive 
strength (MPa) Ref.

Total FA1 CE2 S3 NaOH(s) Na2O·nSiO2
(s) W4 T (°C) t (h)

100 100 – – 8.09 – 15.0 RT – 2.88 1.62 4.0 [78]
100 100 – – 10 – 40 60 24 3.65 1.10 10 [122]
100 100 – – 10.78 – 30 75 24 3.03 2.75 45 [51]
100 100 – – 8.09 – 15.0 80 90d 2.88 1.62 26.2 [78]
100 100 – – 6.16 – 28.8 85 24 3.64 3.15 70.4 [48]
100 100 – – 4.03 – 36.0 85 20 3.64 1.93 64 [155]
100 100 – – - 14.25 20.8 80 90d 3.33 3.36 58.4 [78]
100 100 – – - 19.9 30 80 6 6.25 1.06 46 [110]
100 100 – – 1.88 16.8 20.6 RT – 4.03 2.11 11.2@ [110]
100 100 – – 7.1 10.0 22.9 RT – 4.70 1.15 59.3 [59]
100 100 – – 4.92 9.43 15.6 65 24 3.95 2.61 62.6 [60]
100 100 – – 10.78 21.6 41.0 75 24 3.79 2.75 52 [51]
100 100 – – 10.32 11.6 36.9 70 24 6.48 0.41 44.8 [168]
100 100 – – 7.0 0.88 32.1 85 24 3.69 2.69 91.6 [48]
100 100 – – 4.08 0.64 35.2 85 20 3.72 1.82 46.0 [155]
100 100 – – 4.92 9.43 15.6 85 24 3.95 2.61 68.7 [60]
100 100 – – 9.95 8.76 34.40 – – 3.21 2.28 70 [154]
100 80 – 20 – 14.2 20.8 RT – 3.48 2.99 77.4 [78]
100 50 – 50 – 17.6 36.0 RT – 5.03 1.14 67.5 [117]
100 50 – 50 10 – 40 60 24 3.65 1.10 45 [122]
100 70 30 – 5.8 15.1 27.8 RT – 3.44 1.66 36.94 [87]

Note: 1Fly ash, 2OPC, 3GBFS, 4Water. @: 7-day strength
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 Palomo et al. [60] demonstrated an FAAM cured at 
85 °C for 24 h. The compressive strength of the binder 
reached nearly 70 MPa, as the SiO2/Al2O3 and Al2O3/
Na2O ratios were 3.95 and 2.62, respectively. As the 
SiO2/Al2O3 and Al2O3/Na2O ratios changed to 3.87 and 
3.13, respectively, the compressive strength of the binder 
decreased to 54.5 MPa. Ryu et al. [61] also explored the 
effects of the SiO2/Al2O3, and Al2O3/Na2O ratios in an 
FAAM. At an SiO2/Al2O3 ratio of 4.13, the compressive 
strength was seen to be reduced by the increase in the 
Al2O3/Na2O ratio, and the compressive strength was 
43.1 MPa at 28 days at an Al2O3/Na2O ratio of 1.94.
 Škvára and Bohunĕk [62] found that the Al2O3/ 
/Na2O ratio should be less than 2.32 to obtain a high-
strength FAAM. Fernández-Jiménez et al. [63] conclu-
ded that, when the SiO2/Al2O3 and Al2O3/Na2O ratios 
were 3.50 and 1.50, respectively, the strength of the 
FAAM reached 80 MPa. In the sample with an Al2O3/ 
/Na2O ratio of 1.29 and 0.93, an SiO2/Al2O3 ratio of 3.19 
and 3.68, strengths of 72 and 31 MPa were achieved, 
respectively. The optimal SiO2/Al2O3 and Al2O3/Na2O 

ratios were 3.21 and 2.88 in a binder designed to yield 
a high compressive strength [64]. Temuujin et al. [65] 
found that the binder with an SiO2/Al2O3 ratio of 4.6 and 
an Al2O3/Na2O = 1.14 exhibited the highest compressi-
ve strength. Songpiriyakij et al. [66] proposed that the 
optimal SiO2/Al2O3 ratio was 15.9 to obtain the highest 
compressive strength in an FAAM. Kovalchuk et al. [67] 
obtained a result that showed the optimum SiO2/Al2O3 
ratio was between 3.5 and 4.0. In another FAAM mortar, 
the optimal SiO2/Na2O ratio was between 1.0 and 1.5, in 
which the compressive strengths exceeded 50 MPa [68].
 Tables 1-3 summarise the typical FAAM pastes, 
mortars, and concretes with different curing processes, 
SiO2/Al2O3 and Al2O3/Na2O ratios, in which, the possible 
maximal strength obtained at various fly ash systems is 
emphasised. The compressive strengths of the FAAMs 
are distinctly different in various fly ash systems as well 
as the SiO2/Al2O3 and Al2O3/Na2O ratios. It is difficult 
to identify which aspect plays the primary role. Details 
of the compressive strength versus the changing SiO2/
Al2O3 and Al2O3/Na2O ratios are shown in Figures 1 

Table 2.  The components of the FAAM mortars and their properties.

Binders  (g) Sand
(g)

Activator (g) Curing process
SiO2/Al2O3 Al2O3/Na2O

Compressive 
strength (MPa) Ref.

Total FA1 CE2 S3 NaOH(s) Na2O·nSiO2
(s) W4 T/°C t/h

100 100 – – 212.8 14 – 31.5 40 72 2.79 1.59 28 [68]
100 100 – – 50 10 – 30 85 20 3.19 2.15 41 [63]

1600 1600 – – 2400 220.8 – 739.2 – – 3.76 1.33 13.8 [50]
100 100 – – 212.8 – 29.1 37.0 40 72 3.84 1.49 58 [68]
100 100 – – 200 8.07 5.67 31.3 60 24 2.90 2.29 45 [125]
100 100 – – 212.8 3.2 26.6 36.3 40 72 3.84 1.49 58 [68]
24.1 24.1 – – 65.0 0.45 4.0 4.45 RT – 4.00 2.08 66.1 ± 3.3 [110]
1600 1600 – – 2400 79.2 160 720.8 60 24 4.13 1.94 43.1 [50]
1200 1200 – – 1800 92.9 150.5 324 80 24 4.43 1.62 65 [57]
100 100 – – 200 8.09 15.7 43.2 65 48 4.13 1.30 38.3 [153]
306 306 – – 1362 – 148 227 RT – 4.58 0.70 21.29& [152]
730 730 – – 1178 32.9 86.6 172.5 RT – 3.89 2.45 27.0 [139]
100 100 – – 150 7.04 21.4 41.6 RT – 5.67 0.72 36 [147]
100 100 – – 275 7.25 7.71 25.0 RT – 2.77 1.12 45.0 [140]
577 577 – – 1348 33..3 52.1 254.6 RT – 3.99 1.83 60 [55]
342 342 – – 823.4 35.3 39.8 138.8 70 24 6.48 0.41 46.2 [168]
100 100 – – 50 8.3 – 24.7 85 20 3.5 2.50 40 [21]
730 694 36 – 1141.5 37.1 97.3 194.0 RT – 4.04 2.09 62.0 [139]
100 85 15 – 275 7.25 7.71 25.0 RT – 2.86 1.01 57.8 [140]
100 70 30$ – 150 23.8 10.8 44.8 RT – 6.10 0.56 45 [147]
100 90 – 10 200 8.07 5.67 31.3 60 24 2.98 2.15 41 [125]
579 463 – 116 1348 33.6 52.1 262.3 RT – 4.13 1.64 60 [55]
450 225 – 225 1350 59.2 102 288.8 60 48 6.72 0.58 16.0 [112]
100 50 – 50 160 6.0 18.9 35.1 RT – 4.76 1.00 108 [84]
100 80 – 20 160 6.0 18.9 35.1 RT – 4.52 1.16 78 [84]

Note: 1Fly ash, 2OPC, 3GBFS, 4Water. $: CCR; &: 91-day strength
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and 2. From Figure 1, it can be seen that the changes in 
strength with the Al2O3/Na2O and SiO2/Al2O3 ratios are 
such that, although the absolute values of compressive 
strength vary in various fly ash systems, the relative 
values of the compressive strength in the same system 
exhibit a regular change with the changing Al2O3/Na2O 
and SiO2/Al2O3 ratios. There is a critical value of the 
SiO2/Al2O3 ratio at about 4.20 to 4.30. The compressive 
strength is reduced with an increase in the Al2O3/Na2O 
ratio when the SiO2/Al2O3 ratio is above the critical 
value; while, the strength is increased with an increase 
in the Al2O3/Na2O ratio as the SiO2/Al2O3 ratio is below 
it.

 From the data in Figure 2, it can be seen that the 
ranges of the Al2O3/Na2O and SiO2/Na2O ratios are 
rather wide in the FAAM systems studied. The strength 
of the FAAMs varies from several MPa to more than 
100 MPa. The SiO2/Al2O3 ratio is between 2.0 and 8.0, 
and the Al2O3/Na2O ratio is between 0.5 and 7.0. When 
the Al2O3/Na2O ratio is larger than 4.0 or smaller than 
0.5, the compressive strengths of the binders are usually 
lower than 30 MPa, regardless of the SiO2/Al2O3 ratio. 
A high strength (above 42.5 MPa) is achieved when 
the SiO2/Al2O3 and Al2O3/Na2O ratios are 2.5 to 6.0, 
and 0.7 to 3.5, respectively; however, it seems that the 

Table 3.  The components of the FAAM concretes and their properties.

Binders (g) Aggregates (g) Activator (g)
A/S10 Super 

plastciser (g)
Curing processes Compressive

strength/MPa Ref.
Total FA1 CE2 S3 SF4 F5 C6 A(s)7 WG(S)8 W9 T (°C) t (h)

500 500 – – – 575 1150 25.4 70.9 128.7 0.22 6 70 48 51.63 [162]
400 400 – – – 554 1293 17.8 45.2 95.0 0.21 4 100 72 42.5 [163]
468 468 – – – 1043 828 52.8 – 157.8 0.30 – 85 20 50 [113]
400 400 – – – 651 1209 18.1 47.4 94.5 0.20 – RT – 27 [139]
400 400 – – – 651 1209 18.0 47.4 94.5 0.20 – RT – 27 [139]
440 440 0 0 0 723 1085 22.4 50.4 103.2 0.20 – 60 48 35.11 [161]
202 202 – – – 890 1373 6.1 46.0 75.0 0.29 – 60 24 56.4 [82]
100 100 – – – – – 4.0 11.0 20.0 0.17 – 60 24 67.6@ [99]
381 293 – 88 – 760 1005 20.0 28.0 164.0 0.38 – RT – 37.4 [89]
400 280 – 120 – 652 1210 16 49.2 94.8 0.27 4 RT – 59.3 [3]
381 293 – 88 – 760 1005 28.4 28.0 158.6 0.42 – RT – 37.4 [89]
400 360 40 – – 651 1209 18.0 47.4 94.5 0.20 – RT – 35 [139]
515 500 – – 15* 575 1150 25.4 70.9 128.7 0.21 6 70 48 48.4 [162]
466 440 0 – 26* 723 1085 22.4 50.4 103.2 0.19 – RT – 46.43 [161]
400 320 – – 80 554 1293 17.8 45.2 95.0 0.21 – 100 72 65.0 [163]
400 240 – – 160 554 1293 17.8 45.2 95.0 0.21 – 100 72 72.5 [163]

Note: 1Fly ash; 2OPC; 3GBFS; 4Silica fume; 5Fine aggregate; 6Coarse aggregate; 7NaOH (solid contents); 8Waterglass (solid 
content); 9Water, 10Ratio of water to solids (sum of the mass of fly ash, sodium hydroxide, and sodium silicate solids); *nano-silica, 
@: 7-day strength, $: 90-day strength
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Figure 1.  Compressive strength changes with the ratio of 
Al2O3/Na2O at various SiO2/Al2O3 ratios.

Figure 2.  The strength map with the changes of SiO2/Al2O3 and 
Al2O3/Na2O ratios.
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strength is not directly related to the SiO2/Al2O3 and 
Al2O3/Na2O ratios. In some binders, a low strength is 
obtained, however, high strengths are acquired in other 
binders with similar SiO2/Al2O3 and Al2O3/Na2O ratios. 
Therefore, it is not enough to determine the strength by 
a simple combination of the SiO2/Al2O3 and Al2O3/Na2O 
ratios. 
 It could be seen that there are threshold values for 
the SiO2 and Na2O contents in the alkaline solution to 
guarantee the system has a high pH and a high level of 
soluble Al3+ and/or Si4+ ions [48]. A weak chemical reac-
tion would occur [69] in a low-alkalinity solution due to 
the very low pH, leading to little strength development 
[48]. A sufficient concentration of the alkaline solution, 
which is effectively capable of dissolving fly ash particles 
and forming the gel phases, is necessary to make a bin-
der reach a high compressive strength [48, 70-73]. If the 
alkalinity was low enough, binders with a relatively low 
strength of less than 4.0 MPa were obtained, even when 
cured at high temperatures [74, 75].
 Based on an ion discharge balance, if the reactive 
Al2O3 content is 1.0 mol in the fly ash, it requires 1.0 mol 
Na2O to balance the complete reaction of the fly ash; 
however, the optimal dosage of alkali in practice did 
not agree with the ideal values as published [76], as 
shown in Figure 2. The unreacted particles of the fly ash 
and the crystallinity were always sufficient to weaken 
the sample [77]. Therefore, in order to reduce the risk 
of efflorescence and carbonation at the surface of the 
binder, the extent of the reaction of the glassy phases 
in the fly ash should be considered [10, 78, 79]. The 
extent of the reaction of the amorphous phases in the fly 
ash was estimated at 30 % to 35 % [78]. Therefore, as 
low an alkaline content as possible is recommended by 
stoichiometrically matching it to the expected degree of 
the reaction [79]. 
 In fact, only the ions available in the fly ash 
could interact with the alkali activators. Therefore, 
the amount of dissolved Al3+ and/or Si4+ ions and the 

Si/Al ratio in the precursor are the factors dominating 
the geopolymerisation [67]. This point has been 
widely recognised [28, 30, 44, 57, 60, 68, 80-86]. The 
reactive SiO2 and Al2O3 phases, not that of the original 
prime material, are the most important [50, 48, 85]. 
Unfortunately, many current reports are insufficient in 
terms of the details of the reactive phases. Despite this, 
however, we estimated the role of the reactive components 
through the limited data. Figure 3 illustrates the effects 
of the SiO2/Al2O3 and Al2O3/Na2O ratios, as calculated 
from the reactive phases, on the compressive strengths 
of the FAAMs. The data are less scattered and the effect 
ranges are clearer, compared with those in Figure 2. 
The Al2O3/Na2O ratio is in the range of 0.5 to 2.25, and 
the SiO2/Al2O3 ratio has several ranges, most of which 
are 3.5 to 6.0, 6.8 to 8.6, or 10.0 to 11.2, respectively. 
Among these, the ranges, in which, a possible strength 
of more than 40 MPa is achieved, are 3.5 to 4.2 and 6.8 
to 8.6 for the SiO2/Al2O3 ratio and 0.6 to 2.10 for the 
Al2O3/Na2O ratio. As the SiO2/Al2O3 ratio exceeded 8.6, 
a lower strength was observed, regardless of the Al2O3/ 
/Na2O ratio.
 From the above results, it could be seen that the 
effects of the SiO2, Al2O3, Na2O contents, and their ratios 
on the FAAMs are complicated. In fact, the situation 
is more complicated; so, at first, the alkaline activator 
has various types [87, 88]. There are many options for 
the choice of the alkaline activator, such as sodium 
hydroxide, sodium carbonate, sodium silicate, potassium 
hydroxide, water glass, etc. Also, the combination of 
sodium hydroxide and water glass was often used in 
the FAAMs: strengths of 13.1 MPa and 13.8 MPa were 
obtained as Na2O was only added via NaOH or the 
water glass solution, these were much lower than those 
activated by the mutual addition of NaOH and water 
glass solutions [50]. Similar results were also reported 
elsewhere [60]. As only the NaOH solution (as the alka-
li activator) was added, a sample with a compressive 
strength of about 20 MPa was acquired; while the sample 
with more than 60 MPa could be achieved as the mixture 
of NaOH and the water glass solution with similar Na2O 
contents was added. Second, there was a critical value 
in the content of the alkaline solution [51, 53, 89, 90]. 
A too high of an alkaline content in the FAAMs had the 
opposite effect on the development of the strength [51, 
52, 60, 61, 91-93]. The reduction in strength was thought 
to result from excess silicates hindering the formation of 
the hardened binders or an increase in the coagulation of 
silica [90, 94, 95]. 

The role of water

 Water not only dissolves fly ash, but participates 
in the geopolymerisation of FAAMs [48, 96, 97]. The 
water content plays an important role in determining 
the properties of the binders [65, 73]. In an FAAM 
paste made from “one-part binders”, the compressive 
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Figure 3.  Compressive strength map with the changes of SiO2/ 
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strength was 65 MPa at 21 days at a W/S ratio of 0.34; 
while as the ratio increased to 0.392, the compressive 
strength falls to 50 MPa under the same curing pro- 
cess [45]. Another report also confirmed this result 
[98]. At a W/S ratio of 0.47, the compressive strength 
was 50 MPa. As the ratios were changed to 0.42, 
0.31, and 0.26, the strength reached 63.5, 82.5 and 
96.0 MPa. It was also found that an increased W/S ratio 
reduced the strength of FAAM concretes. At a W/S 
ratio of 0.174, the compressive strength at 7 days 
was 67.6 MPa in the sample cured for 24 h at 60 °C. 
By adding extra water, at W/S ratios of 0.197, and 0.220, 
the compressive strength of the samples decreased 
to 60 MPa and 45 MPa, respectively [99]. In another 
FAAM concrete fabricated from “one-part binders”, at 
a W/S ratio of 0.47, the compressive strength was 50 MPa; 
while at the ratios 0.42, 0.31, and 0.26, the strength 
increased to 63.5, 82.5 and 96.0 MPa, respectively [98]. 
 Lee et al. [100] investigated the difference in the 
compressive strengths of sealed and unsealed FAAM 
pastes. The average compressive strength at 28 days 
of the sealed binders surpassed 130 MPa, which was 
30.8 % higher than that of the unsealed samples. It was 
clear that the sealed water promoted an increase in 
strength in the binders. The authors attributed this to a 
full reaction rather than carbonisation or the presence 
of zeolites. Water is consumed during the hydrolysis/
dissolution of the source material and then regenerated 
by polycondensation processes and is then enclosed in 
the pores of the hardened binders. Water is presumed to 
accelerate the polycondensation rate [101]. In particular, 
the sealing was more important in “one-part binders”, 
because water loss would be promoted if the binders 
were cured in an unsealed state [45]. 
 When an insufficient amount of water is added, 
a low strength would be obtained due to the poor fluidity 
causing an uncompacted binder to remain in the mix. 
When an excessive amount of water is added, there is a 
sufficient mobility of ions in the mixtures for the solid to 
dissolve, resulting in a low level of unreacted material. 
Meanwhile, the addition of water at high levels can 
increase the porosity in the final binders [77], leading 
to a decrease in the strength of the binders [102, 103]. 
Therefore, the optimum W/S ratio is necessary to attain 
a high strength.

The role of calcium-based additives

 The effects of calcium additives were extensively 
elucidated upon [55, 80, 104-112]. As these are added, 
Ca2+ ions could function as a network modifier to balance 
the negatively charged Si–O–Al– tetrahedron, leading to 
a more reactive fly ash. Meanwhile, it increases the CaO/ 
/Al2O3 and CaO/SiO2 ratios in the binder resource, which 
induces the formation of C–A–S–H and N–A–S–H gels 
[112-116], resulting in a different chemical process and 
different chemical products [35, 118, 119].

GBFS is one of the most commonly used precursors 
to produce a calcium resource in FAAMs. GBFS has 
been used to fabricate AAMs as the main raw material 
for over a century [120] and GBFS-based AAMs have 
good mechanical and physical properties [10, 121, 122]. 
The addition of GBFS was found to be able to alter the 
geopolymerisation behaviour of fly ash to generate high 
strengths at ambient temperatures [62, 89, 122-125]. 
When the GBFS replacement of fly ash increased 
from 10 to 30 %, the compressive strengths of FAAM 
concretes at 28 days increased from 21.90 to 56.43 MPa, 
respectively [3]. In another FAAM concrete, as the 
replacement ratios of GBFS for fly ash were 10, 15 and 
20 %, the compressive strengths at 28 days were 15.5, 
23.0 and 29.9 MPa, respectively. If the optimal activator 
was added, binders with a compressive strength of 
37.4 ± 4.04 MPa at 28 days could be obtained when 
the fly ash was replaced by 20 % GBFS [89]. Khan et 
al. [83] investigated an FAAM mortar: given a GBFS 
replacement of fly ash of 30 %, the compressive strength 
at 28 days was about 78 MPa, which was ca. 40 % 
better compared to that of the binder without the GBFS 
replacement. The compressive strengths of 108 MPa and 
106 MPa at 28 days were achieved in the sample with 
50 and 40 % GBFS replacements, respectively. A high 
strength of more than 170 MPa was reported by Škvára 
et al. [62] in a sample with a 50% GBFS replacement. 
Neupane [98] found an FAAM concrete with a 30 and 
40 % GBFS replacement by “one-part binders”, in 
which powdered activators were employed. Concretes 
with compressive strengths of 58 and 96 MPa at 28 days 
were obtained using a binder with 30 and 40 % GBFS 
replacement, respectively. It could be concluded that the 
addition of GBFS in fly ash increased the strength of the 
FAAMs. 
 The replacement of GBFS for fly ash might 
accelerate the fly ash dissolution [82] and induce the 
formation of a calcium-silicate-hydrate (C–S–H) gel [89, 
122, 126-129], and a calcium-alumino-silicate-hydra- 
te (C–A–S–H) gel [26, 119, 122, 126, 128, 130-133], 
besides an alumino-silicate-hydrate (A–S–H) gel. As the 
level of GBFS replacement was increased from 10 
to 20 % in the binder, the main reaction product was 
N–C–A–S–H rather than N–A–S–H. After the amount 
of GBFS was increased to 30 %, C–S–H gels were 
formed as the main reaction products [134]. Meanwhile, 
the two phases (C–S–H and aluminosilicate) were not 
only combined, but they also interacted chemically 
[135, 136]. These factors promoted the strength deve-
lopment of the FAAMs with the GBFS replacement. 
In addition, as more GBFS was added, the formation of 
bonding hydrates, in particular the crystallinity of the 
calcium-based materials, which was similar to zeolites, 
was also responsible for the promotion of the beneficial 
mechanical properties in the FAAMs [35, 62, 106]. 
 OPC is another calcium resource often adopted in 
FAAMs. It was proved that the replacement of fly ash 
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with OPC could effectively improve the strength of 
FAAMs from the early age to the final days [137-140]. In 
an FAAM activated by a modified alkaline activator, by 
adding a silica fume to the sodium hydroxide solution, as 
the 15 % OPC replaced the fly ash, the early compressive 
strength at 1 day was ca. 5.0 MPa, which was improved 
by more than 50 % compared with that of the sample 
without the OPC. The compressive strength of a sample 
with 15 % OPC replacement reached 64.3 MPa at 
28 days. As a comparison, the compressive strengths at 
28 days were 27.2, 53.3, and 57.4 MPa in samples with 
0, 5 and 10 % OPC replacement, which were 42.3, 83.2, 
and 89.3 % of that with 15 % OPC, respectively [75]. 
In another FAAM with naphthalene added to the alka-
line solution, the strength at 28 days was 44.73 MPa in 
a binder without the OPC and increased to 54.76 and 
64.46 MPa as the 10 and 20 % OPC were replaced by 
fly ash [141]. Similar results were observed elsewhere 
[87, 139, 140]. The replacement of OPC with fly ash 
ranged from 5 to 15 % and the compressive strengths of 
the binders increased by 15 % to 45 %. 
 As the OPC partially replaced the fly ash, heat 
is released during the hydration reaction of the OPC. 
This heat will accelerate the alkali activation reactions 
in FAAMs [87]. Moreover, the presence of calcium 
hydroxide resulting from the hydration of cement is 
believed to precipitate a C–S–H gel and calcium-riched 
alumino-silicate-hydrate (C–A–S–H) gels [121, 139, 
143]. In addition, calcium provides extra nucleation sites 
[144, 145], which can also contribute to the alkali acti-
vation reaction of FAAMs.
 Calcium carbide residue (CCR), a by-product of 
acetylene fabrication through the hydrolysis of calcium 
carbide, was also found to introduce calcium into FAAMs 
[116, 146]. It was found that the incorporation of CCR 
increased the compressive strengths of FAAM mortars. 
The compressive strength of FAAM (high calcium fly 
ash) at 28 days without the CCR was 35.6 MPa. As the 
CCR replacements for fly ash were 10, 20 and 30 %, the 
compressive strengths at 28 days increased to 41.8, 44.4, 
and 45.8 MPa, which were 17.4, 24.7 and 28.6 % higher 
than that of the FAAM without CCR, respectively [147]. 
It was implied that the additional formation of a C–S–H 
gel co-existed with N–A–S–H gels was formed due to 
the reaction of Ca(OH)2 from the CCR with Si4+ and 
Al3+ from the fly ash [115,116]. It was also found that the 
replacement CCR for fly ash decreased the initial and 
final, setting times [147]. 
 The calcium sources could be introduced by direct-
ly adding chemical agents containing calcium [148,149]. 
Zhao et al. [149] introduced Ca(OH)2 to an FAAM. When 
ca. 8.9 % Ca(OH)2 relative to the mass of the fly ash was 
added, the compressive strength of the binder at 28 days 
was 9.4 MPa, which is about seven times higher than 
that without the calcium additives. In another FAAM 
activated by an Na2SiO3 solution, a compressive strength 
of 22.9 MPa at 28 days was achieved in the binder with 
the 5.5 % Ca(OH)2 additive, which is 5.6 times higher 

than that obtained with no-calcium additives. The addi- 
tion of Ca(OH)2 induced the formation of the gel pro-
duct C–N–A–S–H, which contributed to the higher 
strength of the binders. Kim et al. [150] indicated that 
the addition of CaO was more effective than Ca(OH)2. 
A sample with more than 40 MPa was achieved as 
20 % CaO and 5 to 10 % CaCl2 was added to an FAAM 
paste. The incorporation of CaCl2 in the CaO-activated 
FAAM could induce the dissolution of the fly ash, 
leading to the formation of more C–S–H gels: however, 
the excessive addition of CaCl2 was detrimental to the 
strength development due to the formation of calcium 
oxychloride [151]. 
 From the above, it is concluded that the addition of 
calcium in FAAMs leads to a higher strength, whether 
the calcium resource came from GBFS, OPC, or other 
calcium-rich materials. Thus, it is not enough to only 
consider the effects of the SiO2/Al2O3 and Al2O3/Na2O 
ratios on the compressive strength in the calcium-rich 
FAAMs. Yang et al. [152] introduced an index – the alkali 
quality coefficient (QA) – combining the components 
of an activator and the source materials. The QA was 
proposed as Na2O/SiO2·Al2O3/SiO2·CaO/B, where B was 
total mass of the solids in the binders. They thought that 
the QA could be used to evaluate the properties of AAMs 
more effectively than each single parameter. We collated 
the data from high calcium-content FAAM systems, 
based on the equation for QA and the strength map is 
demonstrated in Figure 4: no direct relationship with the 
compressive strength can be seen, indicating that the 
QA introduced by Yang et al. [152] has its limitations in 
anticipating the strength of FAAMs. As seen in Figures 
1 and 2, the compressive strengths of the binders did not 
keep increasing with an increase in Na2O/SiO2×Al2O3/
SiO2. Meanwhile, due to the large differences among 
the fly ash systems adopted by various authors, the 
final strength of the FAAMs caused by the effects of 
the fly ash also varied. Assuming the increased strength 
in a binder was caused by the active CaO introduced 
by the calcium-rich resources, we re-calculated the 
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compressive strength by eliminating the effects of the 
fly ash itself and only considered the active calcium and 
its promotion of the compressive strength (the active 
CaO replaced the total CaO and the increased strengths 
replaced the absolute strengths). The results are shown 
in Figure 5: the extra-strength developed by introducing 
active CaO was in line with the CaO content. With an 
increase in the active CaO content, the strength of the 
binders increased in an overall trend, except for the data 
on the bottom right corner in Figure 5 (it was found that 
the SiO2/Al2O3 ratio was relatively large in these cases, 
at 6.7 and 7.2, respectively). Returning to the effects 
of the SiO2/Al2O3 ratio, as shown in Figures 2 and 3, 
it can be seen that a too large an SiO2/Al2O3 ratio has 
an opposite effect on the strength, therefore, it could be 
understood why the low-strength areas in Figure 5 could 
have arisen.  

 The addition of calcium to the fly ash enhances 
the compressive strengths of FAAMs, implying that 
it induces the formation of a binder gel, besides this, 
it balances the ionic charges as a network modifier. 
However, some opposing views have been proposed: 
it seems that the calcium source from the fly ash was 
less effective in increasing the strength [153, 154]. The 
addition of calcium could not influence the mechanical 
strength, and the addition of too much calcium would 
even reduce it [83, 155]. The compressive strength of the 
binder with fly ash only at 90 days was 55.3 MPa, but 
fell to 25.4 MPa when 50 % of the fly ash was replaced 
by GBFS [32, 156]. Similar results were also observed 
in samples with the OPC replacement and the addition 
of Ca(OH)2 [148, 157]. The excessive addition of Ca2+ 
ions to the binders might change the N–A–S–H and 
C–N–A–S–H gels to a C–S–H gel, decreasing the com-
pressive strength at 28 days [35, 83, 106, 157-159]. Lee et 
al. [89] proposed that a calcium addition by GBFS indu-
ced a crack evolution, leading to a decreased compressi-
ve strength. The optimal addition of 7.5 to 10 % OPC 

and 15 to 20 % GBFS replacement was recommended by 
considering the setting time, workability, and strength 
development [32, 75, 129].

The role of silica

 The use of silica in FAAMs was found to enhance 
the strength at ambient temperatures due to the pro-
motion of the dissolution of Si4+ and/or Al3+ ions and 
the transformation of the crystalline phases in the 
binders [20, 58, 75, 160-164]. In an FAAM concrete, the 
compressive strength was about 70 MPa at 28 days in 
samples with 40 % silica fume as a replacement for the fly 
ash, which increased by 64.7 % when compared with that 
of the samples without the silica fume, i.e., ca. 42.5 MPa 
[164]. Rakngan et al. [76] reported that the effect of the 
silica fume was more effective as it was dissolved in the 
alkaline solution more than was replaced by fly ash. As 
4.7 % silica fume by mass of the fly ash was added to 
the 4 M NaOH solution, the compressive strength of the 
binder at 28 days was 40 MPa, which was 61.2 % higher 
than that without the silica fume. Phoo-ngernkham et al. 
[165] reported that adding nano-silica to a high-calcium 
fly ash induced the formation of additional C–S–H or 
C–A–S–H and N–A–S–H gels in the binders, increasing 
the strength of the FAAMs. Criado et al. [166] concluded 
that the addition of a soluble silica modified the reaction 
kinetics and prompted the formation of more Si-rich 
gels. Adak et al. [161,164] reported that a colloidal 
nano-silica increased the strength. The compressive 
strength was 46.43 MPa in the FAAM concrete with a 
6 % nano-silica, some 11.32 MPa higher than that of the 
sample without the additives. The FAAM paste with a 
6 % nano-silica addition reached a compressive strength 
of ca. 48 MPa, which was 27 % higher than that of the 
sample without the nano-silica. Another report details 
a 28-day compressive strength of an AFFM paste con-
taining 1 % nano-silica of 31.8 MPa, in comparison, 
the compressive strength of the paste without the nano-
silica was 29.6 MPa [163].
 On the contrary, contradictory results show the 
opposite effects of the nano-silicas: Okoye et al. [163] 
observed that, for the addition of a nano-silica of above 
2 %, an adverse effect began on the strength of the 
binder. The compressive strengths at 28 days decreased 
to 31.4 and 29.7 MPa, as a 2 % and 3 % nano-silica by 
mass were added. Çevik et al. [162] also observed that 
the compressive strength decreased as a 3 % nano-silica 
was added, compared with that of the samples without 
the nano-silica. The authors attributed this to the 
unreacted nano-silica particles, which caused excessive 
self-dehydration and cracks in the binders.

The role of iron

 To date, the role played by iron oxide in FAAMs is 
rarely investigated and generally accepted agreements 
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about the effects of iron oxide are not recognised [44]. 
Fernandez-Jimenez and Palomo [155] claimed that the 
addition of iron had no influence on the mechanical 
strength because they did not find iron-containing 
phases in the main reaction products. The low iron 
content in fly ash positively influenced the reactivity 
of the fly ash [56, 57]; however, in calcium-rich FAAM 
structures, calcium silicate hydrate gels containing iron 
were found [57]. It seemed that iron played a positive 
role in the formation of FAAMs [57] but, the interaction 
between the alkali activator and the iron in fly ash 
and the final location and coordination in the FAAM 
structure were still not fully understood [44]. However, 
most of the fly ashes used as FAAM resources contain 
iron, and some are iron rich [44, 139, 147, 168, 169], 
making it necessary to investigate the effect of the iron 
and its reaction mechanism.

CONCLUSION

 The components of binder resources have signifi-
cant effects on the compressive strengths of FAAMs. 
The optimal SiO2/Al2O3 and Al2O3/Na2O ratios vary 
with the differences in the fly ash used. The appro-
priate amounts of the components of the binders are 
summarised, in which, the ranges of the SiO2/Al2O3 
and Al2O3/Na2O ratios are 1.5 to 3.5 and 0.7 to 1.4, re-
spectively. An active CaO addition proved to be an effec- 
tive option to enhance the strength. In general, the 
strength of the binders increases with a modified QA, 
however, the effect of the active CaO is subject to 
interference from those of the SiO2/Al2O3 and Al2O3/ 
/Na2O ratios. The roles of iron and its possible reaction 
in FAAMs are not yet fully understood. Considering 
there is iron present in almost all fly ashes, and some 
fly ashes are iron rich, the effect of the iron content on 
FAAMs warrants further investigation.
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