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A hydroxyapatite-1 wt. % magnesium oxide (HA-1M) composite with and without a silicon oxide (SiO2) additive at amounts of 
0.25, 0.5, and 1.0 wt. % was sintered between 1100 and 1300 °C to investigate the effect of the SiO2 additive on the sintering 
behaviour, mechanical properties and in vitro bioactivity of HA-1M. The HA-1M composite consists of HA, whitlockite and 
farringtonite. In the SiO2 added samples, the phases of akermanite, clinopyroxene, merwinite, melilite and diopside were 
detected. These phases contributed to achieving better mechanical properties in the SiO2 added samples than that of the 
HA-1M composite. The highest fracture toughness (1.47 ± 0.04 MPa∙m1/2) and compression strength (183 ± 25.09 MPa) 
were achieved by sintering the HA-1M composite at 1200 °C. In the SiO2 added samples, the highest compression strength 
and fracture toughness were calculated as 201.53 ± 18.01 MPa and 1.78 ± 0.22 MPa∙m1/2, respectively, which belongs to the 
HA-1M-0.5SiO2 composite. With the addition of SiO2 at an amount of 0.5 wt. %, the ratio of the apatite layer formed on the 
surface of the HA-1M composite increased.

INTRODUCTION

	 The availability of innovative bioceramics able to 
stimulate the repair of biological tissues, in particular for 
the treatment of bone defects, represents a current need 
in medicine [1]. Hydroxyapatite (HA) is an important 
mineral making the hard component of tissues, such 
as bones, teeth, and tendons that gives these organs 
stability, strength and improves their mechanical and 
chemical performance [2]. It also possesses excellent 
biocompatibility and osteogenic properties [3]. These 
attractive properties have encouraged its production by 
various methods, including biological [4], chemical [5] 
methods and in commercial purity [6]. However; since 
none of them have sufficient mechanical strength, they 
cannot be used in applications requiring a load-bearing 
capacity in the human body. The properties of HA can 
be modified by dopant and/or substitution materials. 
Various substitutions, such as fluorine [7], zinc [8], 
copper [9], strontium [10], have been used to improve 
the properties of HA. Magnesium (Mg) has also used as 
a substitute in HA [11]. It is closely associated with the 
mineralisation of calcified tissues, directly stimulating 

osteoblast proliferation. Mg depletion adversely affects 
all stages of skeletal metabolism, causing the cessation 
of bone growth, decreased osteoblastic and osteoclastic 
activities, osteopenia and bone fragility [12]. The ultra-
low elastic modulus (45 GPa) of this element (close to 
bone tissue (2-20 GPa)) minimises the problems caused 
by stress shielding. This material also has an ultra-low 
density (1.74 g∙cm3), an excellent tissue healing rate,  
a high strength-to-weight ratio, and a low cost. Despite 
all these advantages, the low corrosion resistance 
of Mg in physiological environments has limited its 
incorporation with HA [13]. One way to overcome 
that problem noted for Mg is to use an Mg-containing 
compound such as magnesium oxide (MgO) [14]. It has 
been extensively used for many years as an orthopaedic 
implant material that exhibits excellent biocompatibility 
and high mechanical strength [15]. It is biocompatible 
and non-toxic; and can be a viable dispersing phase 
to produce a biocomposite. On the other hand, MgO 
degrades slowly compared with pure Mg [16]. Existing 
studies in the literature have revealed that MgO both 
increases the properties of HA and enhances the ability 
of osteoinduction and osteogenesis in the bone repair 
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[17]. While previous studies have attempted to improve 
the poor mechanical properties of HA with the addition 
of different proportions of MgO, none of them reported 
a significant increase in the mechanical properties. The 
highest compression strengths of 55.6 MPa for [18], 
116 MPa [19], 121.81 ± 7.0 MPa [20] were reported to 
HA-MgO composites, whilst the addition of 1 wt.  % 
MgO to HA showed the best sintering performance. 
Tan et al., were able to obtain a fracture toughness of 
1.48 ±  0.17  MPa∙m1/2 for 1.0 wt. % MgO added HA 
[21]. If the MgO addition is more than 1 wt. %, it also 
causes an increase in the decomposition rate of HA. For 
example, Evis et al., reported that the addition of 5 wt. % 
MgO causes 80 % thermal decomposition in the HA-
40 % ZrO2 binary system [22]. In order to improve the 
properties of the HA-1 wt. % MgO composite, several 
studies have been carried out in which materials, such 
as niobium oxide (Nb2O5), strontium oxide (SrO) 
and lanthanum oxide (La2O3), have been added. The 
following results are reported from these studies: The 
addition of 1 wt. %SrO to an HA-1 wt. % MgO compo-
site was reported to cause decomposition of 66.27 % of 
HA to β-TCP, 7.83 % of HA to α-TCP and 6.02 % of HA 
to CaO [23]. A maximum compression strength of 96 ± 
± 0.05 MPa was reported to an Nb2O5 added HA-MgO 
composite [24]. The addition of 1 wt. % La2O3 to an 
HA-1 wt. % MgO composite increased the compressive 
strength from 183.2 to 202.0 MPa, the fracture toughness 
from 1.37 to 2.32 MPa·m1/2 and decreased the brittleness 
index from 3.24 to 2.18 μm-1/2 [25].  
	 Silicon (Si) is also an important element for 
the human body as it influences bone formation and 
calcification. Si has been reported to stimulate cellular 
activities, such as the proliferation and differentiation of 
osteoblast-like cells, mineralisation of human osteoblasts 
and osteogenic differentiation of mesenchymal stem 
cells. The importance of Si for bone formation has 
been demonstrated by indicating the presence of up to 
0.5 wt. % Si in the osteoid of the bones of young mice 
and rats [26]. Moreover, Si substituted HA is also able 
to continuously supply ions which are essential for the 
process of bone reconstruction and biological processes 
[27]. However, it has been reported that the substitution 
of Si to HA causes the conversion of HA to the alpha-
TCP phase, which has lower mechanical properties and 
a dissolution rate that is approximately 12 times higher 
than that of HA [28]. Moreover, the substitution of Si to 
HA also causes an increase in the number of dislocations 
and separation of grain boundaries from each other. It 
negatively affects its use in applications in the human 
body [29]. It has been stated that these problems can be 
overcome by doping HA with silica (SiO2) instead of Si 
substitution [30]. Several studies have been undertaken 
to explain the effect of adding SiO2 on the sintering 
behaviour of HA. HA with an SiO2 addition results in 
the formation of calcium silicates that contribute to 
increasing the bioactivity of HA [31]. If the SiO2 content 

in HA is more than 1.5 wt. %, the HA-SiO2 composite 
consists of pores, amorphous SiO2 grains, unsintered 
regions and the transformation of HA into α-TCP, and 
leads to decrease in the sinterability of HA [32]. The 
addition of SiO2 to a bovine HA-ZrO2 composite was 
reported that its presence contributed to increasing the 
strength from 101 to 118 MPa [33]. Therefore, the idea 
has emerged that incorporating the advantages of both 
materials into HA could turn it into a suitable bone 
implant material. For that, SiO2 between 0.25 wt. % and 
1.0 wt. % was added to the HA-1 wt. % MgO composite 
and the effect of the SiO2 addition on the properties of 
HA-1 wt. % MgO was investigated by a series of tests 
and material characterisation techniques. 

EXPERIMENTAL

	 Hydroxyapatite (irregular form with an average 
grain size of 7.10 μm, Across Organics; Belgium), MgO 
(spherical form with an average grain size of 3.27 μm, 
99.5 % in purity; Sigma Aldrich, USA), and SiO2 
(spherical form with an average grain size of 4.01 μm, 
99.5 % in purity; Sigma Aldrich, USA) powders were 
mixed to prepare the composites as shown in Table 1. 
The composites were wet homogenised with the addition 
of ethyl alcohol and zirconia balls at 180 rpm for 2 h 
in a ball milling device, and then dried in an oven at 
105 °C for 24 h. After drying, the green bodies were 
pelleted at 350 MPa at 11 ± 0.2 mm in height and length 
in accordance with our previous study [34]. They were 
sintered in air at 1100, 1200 and 1300 °C with a ramp 
rate of 5 °C∙min-1 over 4 h, and then cooled to room 
temperature at the same rate. 

	 After the sintering treatment, the properties of the 
sintered samples were determined by the measuring the 
shrinkage, density, porosity, relative density, hardness, 
fracture toughness, brittleness index and performing 
a compression test. The shrinkage in the samples were 
calculated using Equation 1. 

 Where S: Shrinkage, lo: Length of the sample before 
sintering (mm), l: Length of the sample after sintering 
(mm).            

Table 1.  Composition of the samples.

Sample ID	 HA	 MgO	 SiO2 
	 (wt. %)	 (wt. %)	 (wt. %)
HA	 100	 -	 -
HA-1M	 99	 1.0	 -
HA-1M-0.25S	 98.75	 1.0	 0.25
HA-1M-0.5S	 98.50	 1.0	 0.50
HA-1M-1S	 98	 1.0	 1.0

S =  

l0 - l
l0

×100 (1)
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	 The density and porosity of the samples were 
calculated by the Archimedes method using Equation 2 
and 3, respectively. The relative density of the samples 
was calculated using Equation 4. 

	 Where D is the density (g∙cm-3), wd is the dry 
weight of the sample (g), ww is the wet weight of the 
sample (g), and ws is the wet weight of the sample in 
distilled water (g). 

	 Where RD is the relative density (%), Dt is the 
theoretical density of the samples (g∙cm-3) calculated by 
the mixture rule and taken as 3.156 g∙cm-3 for HA [35], 
3.58 g∙cm-3 for MgO [36], and 2.20 g∙cm-3 for SiO2 [37]. 
	 The hardness of the samples was measured by 
a Future Tech FM 301 microhardness tester using an 
application load of 1.962 N at a dwell time of 20 s as 
it provided the formation of a hardness indent without 
cracking. It was calculated using Equation 5. 

	
Where Hv is the hardness, d is the average of the two 
diagonals of the imprint (mm), and F is the applied  
load (N). 
	 The fracture toughness of the samples was 
determined on 1 μm polished samples using 2.943N 
loads for 10 s, according to Equation 6.

Where; KIC is the fracture toughness (MPa∙m1/2), c is the 
radial crack dimension measured from the centre of the 
indent impression (m), and a is the half diagonal of the 
indentation (m).
	 The compressive strength of the samples was 
determined at a loading rate of 2 mm/min using a univer-
sal testing machine (Devotrans FU 50 kN, Turkey). 
Equation 7 was employed to calculate the brittleness 
index [38] of the samples, where B is the brittleness index, 
HV is the hardness, and Kıc is the fracture toughness.

	 The phases in the samples were analysed by a 
Philips X’Pert X-ray diffraction machine using Cu-
Kα as the radiation source at a scan speed of 0.6° per 
minute and a step scan of 0.02° in the range of 2θ values 
between 25° and 50°. The percentage of the phases 

was determined by Rietveld analysis. The surface 
morphology of the samples were determined by an FEI 
Sirion XL30 Scanning Electron Microscope (SEM) 
machine. The average grain size of the sintered samples 
was determined by the linear intercept method. 
	 For the in vitro bioactivity property examinations, 
the samples having the highest mechanical properties 
were ground with SiC papers of up to 1200 mesh and 
ultrasonically rinsed in acetone, absolute alcohol 
and deionised water five times in turn to remove 
any contamination and particulates. The solution 
was prepared by dissolving reagent grade sodium 
chloride (NaCl), potassium chloride (KCl), calcium 
chloride dihydrate (CaCl2∙2H2O), magnesium chloride 
hexahydrate (MgCl2∙6H2O), sodium hydrogen carbonate 
(NaHCO3), dipotassium hydrogen phosphate trihydrate 
(K2HPO4∙3H2O), sodium sulfate (Na2SO4) in deionised 
water. Then the solution was buffered to a physiological 
pH of 7.32 at 37 ± 1°C by both hydrochloric acid (HCl) and 
tris (hydroxymethyl) aminomethane ((CH2OH)3CNH2). 
The in vitro bioactivity was evaluated by soaking the 
pellets, mounted vertically, in 40 mL of simulated body 
fluid (SBF) prepared according to Ref [39] for 14 and 
28 days. After immersion in the SBF for various periods, 
the immersed samples were retrieved, gently rinsed with 
distilled water, and dried at 60 °C for 1/2 day. The SEM 
analysis finally examined the surface of the samples, and 
the Ca/P ratio was calculated by energy dispersive X-ray 
diffraction (EDS) analysis.

RESULTS AND DISCUSSION

	 Figure 1 shows the X-ray diffraction (XRD) patterns 
of the pure HA depending on the sintering temperatures. 
2.2 % of HA was decomposed into beta-tricalcium 
phosphate (β-TCP) after sintering at 1100 °C, as shown 
in Table 2. The increase in the sintering temperature 
resulted in the decomposition of 3.8 % and 4.1 % of 
HA to β-TCP, respectively. Moreover, 1.6 % of HA 

Figure 1.  XRD patterns of the pure HA depending on the 
sintering temperatures.

D =  ww - wS

wd
(2)

p =  

ww - wd

ww - wS
×100 (3)

RD =  

D
Dt 

×100 (4)

Hv =  

0.891xF

d2 
(5)

KIC = 0.203 
c
a

-⅕

Hv ∙ a
½ (6)

B =  KIC

Hw (7)
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decomposed into alpha-tricalcium phosphate (α-TCP) 
and 0.1 % into calcium oxide (CaO) when sintering was 
carried out 1300 °C. In other words, the decomposition 
rate of HA increased from 2.2 % to 4.8 % with the 
increase in the temperature. Its decomposition after 
sintering at 1300 °C was described by Chaki et al. [40] 
as seen in Reaction 1. (Ca3(PO4)2 is β-TCP, and Ca3P2O8 
is α-TCP): 

Ca10(PO4)6(OH)2 → 2Ca3(PO4)2 +
+ Ca3P2O8 + CaO + H2O                   (1)

	 Figure 2 shows the XRD patterns of the HA-1M 
composites depending on the sintering temperatures. 
In the HA-1M composite, whitlockite and farringtonite 
phases were detected in addition to the main phase HA. 
The farringtonite (Mg3(PO4)2) phase detected at a rate 
of 0.3 % at 1100 °C disappeared with the increasing 
temperature. It forms in the CaO-P2O5-MgO ternary 
system between 700 and 1100 °C [41] as the reaction 
between (PO4)3- in Ca3(PO4)2 and Mg2+ in MgO [42]. 
Incorporation of MgO leads to a gradual transformation 
of the HA in the whitlockite. However, if the MgO ratio 
exceeds 1 wt. %, it causes the formation of β-TCP together 
with whitlockite as the replacement of Ca by Mg in the 
HAP is limited. This is related to the size differences 
between the Mg2+ and Ca2+ (~0.28 Å) radii. Increasing 
the concentration of Mg in HA has the following effects 
on its properties: a) gradual decrease in the crystallinity; 
and b) increase in the extent of dissolution [43]. The 
content of whitlockite increased from 2.8 % to 6.5 % 

with the increasing temperature (Table 3). The highest 
content of whitlockite in the present study is around 
50  % lower than that of Ref [44]. Moreover, it was 
reported in the same study that increasing the MgO ratio 
from 1 wt. % to 20 wt. % resulted in the decomposition 
of 30 % of HA into β-TCP. The increase in the β-TCP 
content reduces the mechanical strength of HA 
ceramics and makes it unsuitable for surgical implant 
applications that require improved mechanical strength 
[45]. Whitlockite also contributes to the increase in the 
β-TCP→α-TCP transformation temperature to around 
1380 °C in HA-1 wt. % MgO composites [46]. HA and 
whitlockite have different atomic arrangements based on 
their hexagonal (P63/m) and rhombohedral (R3c) crystal 
structures, and exhibit different material properties. For 
example, while HA has greater stability in neutral pH 
conditions, whitlockite has higher stability in acidic 
conditions (pH < 4.2). As a result, whitlockite has higher 
solubility than HA in physiological conditions, and can 
continuously supply ions such as Mg2+ or PO4

3− ions 
that can stimulate the ion channels at the membrane of 
stem cells, and enhance the osteogenic activity of cells. 
In addition, while HAP has a net neutral surface charge, 
whitlockite has a negatively charged surface which 
enables positively charged osteogenic proteins such as 
bone morphogenetic protein (BMP) to be adsorbed on its 
surface by electrostatic interaction [47].
	 Figure 3 and Tables 4-6 show the XRD patterns 
and the chemical compositions of the HA-1M-S 
composites, respectively. It is obviously seen that the 

Figure 2.  XRD patterns of the HA-1M composite depending 
on the sintering temperatures.

Table 2.  Chemical composition of the pure HA depending on 
the sintering temperature.

    Sintering 	 Sample	 Chemical
Temperature		  composition (%)
       (°C)		  HA	 β-TCP	 α-TCP	 CaO
1100			   2.2	 -	 -
1200	 Pure HA		  3.8	 -	 -
1300			   4.1	 1.6	 0.1

Table 3.  Chemical composition of the HA-1M composite 
depending on the sintering temperature.

  Sintering 	 Sample	 Chemical composition
Temperature 		  (%)
    (°C)		  HA	 Whitlockite 	 MgO	 Farringtonite 
1100		  96.7	 2.8	 0.2	 0.3
1200	 HA-1M	 96.4	 3.2	 0.4	 -
1300		  93.0	 6.5	 0.5	 -

a)  0.25S
Figure 3.  XRD patterns of HA-1M- composites.

continues on next page...
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type and percentages of the phases formed in HA-1M-S 
composites, as well as their chemical compositions, 
are affected by the SiO2 ratio. In these composites, the 
farringtonite phase formed in the HA-1M composite was 
not detected. It is attributed to the formation of phases 
containing Ca-Mg-Si-O elements, such as akermanite, 
clinopyroxene, merwinite, melilite and diopside, 
formed in the SiO2 added samples. In the case of the 
SiO2 ratio of 0.25 wt. %, the whitlockite ratio increased 
from 3.5 % to 5.9 % with the increasing temperature, 
and it increased from 4.9 % to 7.8 % at an SiO2 ratio of 
0.5 wt. %. Increasing the SiO2 ratio to 1 wt. % caused the 
whitlockite ratio to decrease and vary between 2.8 % and 
4.6 %. It is clearly seen that the increase in the SiO2 ratio 
to 1 wt. % triggers the formation of phases containing 
Ca-Mg-Si-O elements instead of the whitlockite 
phase in the microstructure. Akermanite is a member 
of CaO-MgOSiO2-based bioceramics, belonging to 
a tetragonal crystal system, space group P-4̅21m and 
Z  = 2. Additionally, it possesses superior mechanical 
properties to those of HA and β-TCP [48]. It is formed 
by the eutectic transformation at 1376 °C in the CaO-
MgO-SiO2 ternary system [49] and maintains its stability 
up to room temperature [50].  Clinopyroxene crystallises 
in the (100) direction as subhedral grains as a result of 
the dissolution of diopside-enstatite in the CaO-MgO-
SiO2 system [51, 52]. Its presence was also confirmed by 
Ref [53], where Mg and Si were co-substituted into HA. 
Merwinite is a bioceramic in the CaO-MgO-SiO2 system 
[54], which occurs at 1410 ± 5 °C after the eutectic 

Figure 3.  XRD patterns of HA-1M- composites.

b)  0.5S

c)  1.0

Table 4.  Chemical composition of the HA-1M-0.25S composite depending on the sintering temperature.

Sintering 	 Sample	 Chemical composition
Temperature 		   (%)
(°C)		  HA	 Whitlockite 	 Akermanite 	 MgO	 Clinopyroxene
1100	 HA-	 95.7	 3.5	 0.3	 0.5	 -
1200	 -1M-	 93.2	 4.1	 1.9	 0.8	 -
1300	 -0.25S	 90.6	 5.9	 2.4	 0.9	 0.2

Table 5.  Chemical composition of the HA-1M-0.5S composite depending on the sintering temperature.

  Sintering 	 Sample	 Chemical composition
Temperature 		  (%)
   (°C)		  HA	 Whitlockite	 Akermanite 	 MgO	 Merwinite
1100	 HA-1M-0.5S	 94.3	 4.9	 0.5	 0.3	 -
1200		  93.0	 5.1	 1.2	 0.7	 -
1300		  86.6	 7.8	 1.8	 0.8	 3.0

Table 6.  Chemical composition of the HA-1M-1S composite depending on the sintering temperature.

   Sintering 	 Sample	 Chemical composition
Temperature		  (%)
      (°C)		  HA	 Whitlockite	 Akermanite 	 MgO	 Melilite	 Diopside
1100	 HA-1M-0.5S	 93.6	 2.8	 3.1	 0.2	 0.1	 0.2
1200		  90.7	 3.4	 4.6	 0.4	 0.4	 0.5
1300		  83.3	 4.6	 10.0	 0.5	 0.7	 0.9
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transformation (liquid akermanite + merwinite) [55]. The 
CaO/MgO molar ratio is in the range of 4.02 - 4.24, and 
the MgO/SiO2 molar ratio is in the range of 0.33 - 0.38 
in the merwinite [56]. Melilite crystallises in a tetragonal 
crystal structure, a layered structure in which Mg and Si 
are in a corner sharing tetrahedral coordination [57]. It 
is formed by the dissolution of MgO in Ca2SiO4 at about 
1320 °C in the CaO-MgO-SiO2 system when Mg is at 
an atomic rate of 3.89 % [58], and it nucleates in the 
interface region of akermanite and diopside during the 
transformation of the liquid into akermanite and diopside 
phases [59]. Diopside is a member of the clinopyroxene 
mineral family that possess a single chain silicate 
structure and crystallises to form a solid solution with 
other cations available for substitution for calcium and 
magnesium. It has been proposed for use in bone surgery 
due to its high bending and compression strength which 
is stronger than human cortical bones [60]. According 
to the literature, all the crystalline phases indicate they 
have the bioactivity property, since they induce the 
formation of hydroxyapatite on the ceramic body in the 
SBF solution [61]. 
	 Figure 4 shows the shrinkage of the pure HA, 
HA-1M and HA-1M-S composites depending on the 
sintering temperature. The increase in the sintering 
temperature contributed to the increase in the shrinkage 
rates of the pure HA (13.53 ± 0.50 to 18.20 ± 0.62 %) and 
HA-1M composite (12.82 ± 0.25 to 18.45 ± 0.61 %). The 
shrinkage in the HA-1M-0.25S (from 17.17 ± 1.15 % to 
18.51 ± 1.31 %) and HA-1M-0.5S (from 17.00 ± 0.77 % 
to 19.58 ± 1.21 %) composites reached the highest values 
with the increasing temperature, however; the highest 
shrinkage for the HA-1M-1S composite was determined 
to be 17.436 ± 0.668 % at 1200 °C. The sintering of the 
SHA-1M-1S composite at 1300 °C caused a reduction 
in the shrinkage from the highest value to 17.16 ± 
±  0.76  %. This is related to the formation of diopside 
in this composite after sintering at 1300 °C, as can be 
seen in Figure 3c. Because its coefficient of thermal 
expansion (3.33 × 10-6 K-1 [62]) is much lower than the 
other phases, i.e., HA (13.6 × 10-6 K-1 [63]), whitlockite 

(11.1 × 10-6 K-1 [64], akermanite (8.8 × 10-6  K-1 [65], 
melilite (5.4 × 10-6 K-1 [66]), and MgO (8.0 × 10-6 K-1 
[67]). In addition, the shrinkage of the HA-1M-1S 
composites was determined to be lower than the other 
SiO2 added composites for all the sintering temperatures. 
This is due to the fact that the clinopyroxene (1205 °C 
[68]) and merwinite (1420 °C [69]) phases formed in 
the HA-1M-0.25S and HA-1M-0.5S composites have a 
lower melting point compared to the melilite (1576 °C 
[70]) and diopside (1715 °C [71]) phases, that is, they 
contribute to the increase in the sinterability behaviour 
of the HA-1M composite.
	 Figure 5 shows the density, porosity and relative 
density of HA and the composites depending on the 
sintering temperature. The density of HA without any 

Figure 4.  Shrinkage of the pure HA, HA-1M and HA-1M-S 
composites depending on the sintering temperature.

Figure 5.  The density (a), porosity (b) and relative density (c) of 
HA and the composites depending on the sintering temperature

a)  density

b)  porosity

c)  relative density
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additives measured as 2.316 ± 0.028 g∙cm-3 at 1100 °C 
increased to 3.029 ± 0.018 g∙cm-3 at 1200 °C and 
3.064 ± 0.024 g∙cm-33 at 1300 °C. Similar behaviour, i.e., 
an increase in density with an increasing temperature, 
was observed for HA-1M and its density increased from 
2.586 ± 0.025 to 3.068 ± 0.041 g∙cm-3. The densities 
of the SiO2 added samples were determined to vary 
between 2.760 ± 0.040 and 2.970 ± 0.050 g∙cm-3. The 
density of these composites at 1100 °C is higher than 
that of HA and the HA-1M composite, whereas they are 
lower at 1200 and 1300 °C. The attainment of a lower 
density in the SiO2 added samples when sintering is 
performed at 1200 and 1300 °C is due to the formation 
of Ca-Mg-Si-O containing phases, most of which have a 
lower theoretical density than HA, MgO and whitlockite 
(Table 7).

	 The attainment of a higher density in the SiO2 
added samples when sintering is performed at 1100 °C 
is due to the lower melting points of SiO2 (1726 °C [78]) 
compared to MgO (2852 °C [79]. This led to an increase 
in the sinterability between HA and MgO particles 
at the sintering temperature of 1100 °C. Therefore, 
the porosity ratios of the SiO2 added samples at this 
temperature are considerably lower than the pure HA 
and HA-1M composite (Figure 5b). It was calculated 
as 26.589 ± 0.895 % for the pure HA and 15.297 ± 
± 1.430 % for HA-1M composite, but decreased to the 
lowest value with 5.079 ± 0.907 % in the 0.5 wt. % SiO2 
added sample. Also, the porosity ratios of HA-1M-0.5S 
at 1200 and 1300 °C measured as 1.166 ± 0.180 % and 
1.129 ± 0.456 %, respectively, and they were found to be 
lower than the other HA-1M-S composites. The porosity 
of the pure HA at these temperatures was measured as 
4.018 ± 0.595 % and 2.912 ± 0.769 %, respectively. The 
porosity ratios in the HA-1M composites after sintering 
above 1100 °C were measured as 1.257 ± 0.282 % and 
1.019 ± 0.185 %, respectively. Sintering of HA-1M at 
1200 °C with the addition of SiO2 at an amount of 0.25 
and 1.0 wt. % led to its porosity increasing from 1.257 ± 
0.282 % to 1.743 ± 0.465 % and to 3.118 ± 0.821 %. On 
the other hand, the sintering of the HA-1M composite 
at 1300 °C increased its density from 1.019 ± 0.185 % 
to a maximum of 1.975 ± 0.789 %. It is clearly seen 
that the addition of SiO2 caused a slight increase in 
the porosity ratio of the HA-1M composite. Similar 

behaviour has also confirmed for co-(0.65-1.38 wt. %)
Mg/(0.92-1.73  wt. %)Si substituted HA [80]. It has 
been proven that a slight increase in the porosity ratio 
of the HA-1M composite with the addition of SiO2 
contributes to a significant increase in the osteogenesis, 
osseointegration, and bone mineralisation of titanium 
implants after 6, 10 and 14 weeks of implantation in 
rat distal femoral defects [81]. Bioceramics with three 
different components may have a lower sintered density 
and, therefore, possibly slightly higher porosity than 
bioceramics with two different components, however; 
this tends to favour the biomineralisation process 
by accelerating the release of Ca2+ and PO4

3- and 
their supersaturation levels in the environment. [82]. 
Bioceramics containing biocompatible phases with a re-
lative density at about 90 % are preferred in biomedical 
applications because they can provide sufficient 
mechanical properties and contribute to the interaction 
in the implant-bone interface region [83]. The relative 
density of the pure HA increased from 75.365 ± 0.789 
to 98.353 ± 0.176 % with the increasing temperature. In 
HA-1M, it increased from 81.885 ± 0.882 to 97.885 ± ± 
1.312 %. The relative density varies between 87.519 ± 
± 1.044 and 88.701 ± 1.783 %, which was obtained by 
sintering at 1100 °C and adding SiO2. It was between 
89.739 ± 1.239 and 94.086 ± 1.138 % above 1100 °C in 
the HA-1M-S composites.  However, the relative density 
of the HA-1M-S composites above 1100 °C are higher 
than commercial inert glass added HA-Al2O3 and HA-
ZrO2 composites [84]. The addition of Al2O3 [85], ZrO2 
[86], and commercial inert glass [87] causes an increase 
in the β- and/or α-TCP content of HA and a decrease 
in its sinterability. Additional problems related to the 
sintering of HA/glass composites are the formation of 
micropores due to the release of OH- groups from HA 
during thermal treatment, the local shrinkage of glass 
through liquid-phase sintering, and the specific volume 
change caused by the β-TCP → α-TCP transformation 
[88].
	 Figure 6 shows the hardness, fracture toughness and 
brittleness index of HA and the composites depending on 
the sintering temperature. The increase in the sintering 
temperature contributed to the increase in the hardness 
of the pure HA and allowed it to increase from 154.10 ± 
± 5.40 to 499.20 ± 12.39 HV. The highest hardness of HA 
is in agreement with Ref [89]. It is believed that the higher 
density played a role in producing higher hardness values 
where an increase in the density leads to an increase in 
the hardness [90]. The highest fracture toughness for the 
pure HA was measured as 0.96 ± 0.05 MPa∙m1/2 at 1100 °C 
and decreased to 0.71 ± 0.06 MPa∙m1/2 with the increasing 
temperature. Similar behaviour was also confirmed by 
Ref [91]. A decrease in the fracture toughness with an 
increasing grain size is usually observed in pure HA 
ceramics when the mechanism is transgranular because 
the major contribution to cracking resistance is related 
to the crossing of the grain boundaries [92]. Increasing 

Table 7.  The theoretical density of the phases that occurred in 
the HA-1M-S composites. 

Phase 	 Theoretical density (g∙cm-3)	 Reference
Akermanite	 2.94	 [72]
Clinopyroxene	 2.91	 [73]
Melilite	 2.92	 [74]
Merwinite	 3.34	 [75]
Diopside	 3.26	 [76]
Whitlockite	 3.12	 [77]
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in the sintering temperature caused a significant increase 
in the brittleness index of the pure HA (from 1.57 ± 0.05 
to 6.86 ± 0.21 μ-1/2). The hardness (from 192.9 ± 10.65 to 
453.0 ± 022.82 HV) and brittleness index (from 1.67 ± 
± 0.09 to 5.26 ± 0.46 μ-1/2) of the HA-1M composite  
also increased with the increasing temperature, but 
the highest fracture toughness was measured as 
1.47 ± 0.04 MPa∙m1/2 when sintering was carried out at 
1200 °C. In the HA-1M-S composites, the highest hardness 
and fracture toughness were calculated as 445.90 ± 
± 17.10 HV and 1.78 ± 0.22 MPa∙m1/2, respectively. They 
are obtained as a result of sintering at 1300 and 1200 °C 

and belong to the HA-1M-0.5S composite. Sintering 
at 1300 °C caused its fracture toughness to drop to 
1.04  ±  0.22 MPa∙m1/2. Its brittleness index increased 
from 2.39 ± 0.35 to 4.12 ± 0.45 μ-1/2 with an increase in 
the sintering temperature. The hardness increased from 
300.40 ± 68.60 to 431.70 ± 18.24 HV for HA-1M-0.25S, 
and from 288.68 ± 38.40 to 411.96 ± 24.81 HV for HA-
1M-1.0S. The highest fracture toughness of the HA-
1M-0.25S and HA-1M-1.0S composites was obtained 
at 1200 °C and calculated as 1.60 ± 0.16 and 1.35 ± 
0.12  MPa∙m1/2, respectively. As a result of sintering at 
1300  °C, the fracture toughness of these composites 
decreased to 1.03 ± 0.16 and 1.00 ± 0.14  MPa∙m1/2, 
respectively. The brittleness index of these composites 
increased with the increasing temperature, which 
was measured as 2.11 ± 0.48, 2.34 ± 0.21 and 4.11 ± 
±  0.45  μ-1/2 for the HA-1M-0.25S composite and as 
2.39 ± 0.31, 2.46 ± 0.22 and 3.51 ± 0.20 μ-1/2 for the 
HA-1M-1.0S composite. With the addition of SiO2 at 
an amount of 0.5 wt. %, a 20 % increase in the highest 
fracture toughness and a 35 % decrease in the brittleness 
index of HA-1M could be achieved when sintering 
was carried out at 1200 and 1300 °C. It is thought that 
the improvement in the fracture toughness of HA-1M 
composites by the addition of SiO2 may be related to 
three different mechanisms: The more grain boundaries 
consume more energy of the crack during its sintering 
granular propagation as the grain size decreased [93]. 
The chemical bonding of SiO2 is a covalent binding, 
whereas that of MgO is an ion binding. The covalent 
binding is comparatively strong, whereas the ion binding 
is comparatively weak [94]. The addition of SiO2 to 
the HA-1M composite increased the bond between the 
MgO and HA particles by providing the formation of 
intergranular phases, such as akermanite (1.83 MPa∙m1/2 
[95]), merwinite (2.68 MPa∙m1/2  [96]), clinopyroxene 
(2.0 MPa∙m1/2  [97] and diopside (3.5 MPa∙m1/2  [64], 
which have higher fracture toughness than whitlockite, 
farringtonite and HA, and caused the propagation of 
cracks formed during micro-indentation along the grain 
boundaries. It was concluded that there may be several 
reasons for the 35 % decrease in the brittleness index of 
HA-1M with the addition of SiO2 after sintering at 1200 
and 1300 °C. As the hardness increases, the brittleness 
index of the material increases [38]. For this reason, the 
HA and HA-1M composites with higher microhardness 
values are the most prone to fracture. The other reason 
is that the intergranular phases formed by the addition 
of SiO2 encourage grain formation with homogeneous 
distribution as shown in Figure 8. In a previous study, 
the same behaviour was also confirmed in the HA doped 
with 5 % moles of Mg, Mn or Zn [98]. It has been 
reported that a material intended to be used as a bone 
implant material should have a brittleness index lower 
than 4.3 μ-1/2 [99]. It is seen that SiO2 added samples 
meet this requirement.

Figure 6.  Hardness (a), fracture toughness (b) and brittleness 
index (c) of HA and the composites depending on the sintering 
temperature. 

a)  Hardness

b)  fracture toughness

c)  brittleness index
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	 Figure 7 shows the compression strength of HA and 
the composites. The increase in the sintering temperature 
caused the compressive strength of the pure HA to 
decline from 130.2 ± 6.22 to 65.6 ± 5.59 MPa. Traditional 
sintering of HA requires a temperature of over 1100 °C 
for densification. However, the high temperature not 
only consumes time and energy, but also causes HA to 
lose hydroxyl groups and destroy its structural stability 
[100]. The average grain size of pure HA dramatically 
increased from 0.473 to 17.167 μ with the increasing 
sintering temperature, as shown in Figure 7. With an 
increase in grain size, the compression strength of the 
sintered HA compacts decreases [101]. It is also attribu-
ted to the presence of microcracking due to mismatch 
in the thermal expansion behaviour of the secondary 
phases, i.e., TCPs and CaO, in the HA compacts [102]. 
Microcracking in HA ceramics is also observed when 
the grain size of HA exceeds a certain critical value. It 
was calculated as 0.4 μ by Ref [103]. The formation of 
microcracks in HA ceramics also causes a reduction in 
the cross-sectional area and, thus, causes a decrease in 
the resistance to compression load [104]. Briefly, the 
compression strength of the pure HA decreased with 
the increasing temperature due to three factors, namely 
microcracking due to the thermal expansion mismatch 
and exceeding the critical grain size and reduction in the 
cross-sectional area. Due to the minimisation of these 
factors, the highest compressive strengths of the HA-1M 

and HA-1M-S composites are higher than that of the pure 
HA. The compressive strength of the HA-1M composite 
of 126.5 ± 20.5 MPa at 1100 °C increased to its highest 
value of 183 ± 25.09  MPa at 1200  °C, but decreased 
to 108 ± 17.51  MPa at 1300 °C. Similar behaviour, 
that is, obtaining the highest compressive strength at 
1200 °C and decreased compressive strength at 1300 °C, 
was also observed in the HA-1M-S composites. The 
microstructure of samples sintered at 1300 °C show 
abnormal grain growth compared to the samples sintered 
at 1200 °C, which may be the reason for the reduction 
in the strength [105]. The compressive strength of the 
HA-1M-0.25S composite at 1100, 1200 and 1300 °C was 
calculated as 135.2 ± 15.42, 187.59 ± 16.80 and 112.43 ± 
±  13.76 MPa, respectively. While the compressive 
strength of the HA-1M-0.5S composite is 149.27 ± 
16.95, 201.53 ± 18.01 and 124.61 ± 14.28  MPa, and 
they are 129.83 ± 12.59, 166.72 ± 12.84 and 110.55 ±  
± 10.76 MPa for the HA-1M-1S composite, respectively. 
There are two reasons why the 0.5 wt. % SiO2 added 
sample has a higher compressive strength than that of 
HA-1M: First, the HA-1M-0.5S composite exhibited 
a more resistant behaviour under compression load, 
since the akermanite (210 MPa [106]) formed in these 
composites has a higher compressive strength than that 
of whitlockite (306.25  kPa [107]). Second, its average 
grain size is about 25 % less than that of HA-1M, as 
shown in Figure 8. With a decrease in the grain size, 
the fracture toughness and compressive strength of HA 
based ceramics increase [108]. The highest compressive 
strength of the HA-1M-S composites is also compatible 
with 100-230 MPa, but its fracture toughness is less than 
2-12 MPa∙m1/2, which are desired limits for implants 
requiring load resistance in the human body [109].
	 The SEM images of HA-1M and HA-1M-S 
composites are shown in Figure 9. They are composed 
of closely packed particles and well-defined grain 
boundaries without microcracking. The SiO2 additives 
also contribute the grain growth inhibition in the HA-1M 
composite. However, the addition of SiO2 at an amount 
of 1 wt. % caused a decrease in the sinterability of the 
HA-1M composite. It is also composed of porosities and 
grains with heterogeneous size distribution.

	

Figure 7.  Compression strength of the HA and the composites.

Figure 8.  SEM images of the pure HA sintered at 1100, 1200 and 1300 °C, respectively. 
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As seen in Figure 10; after 7 days of the SBF test, an 
apatite layer started to form on the pure HA surface 
having a cube-shaped form, and its surface was 
completely covered with the apatite layer after 28 days 
of the SBF test. As a result of the EDS examinations, the 
Ca/P molar ratio was calculated as 1.70, 1.61, 1.39 and 
1.24. As reported by Ref [110], the Ca/P molar ratio of 
the apatite layer formed on the surface of a biomaterial, 
which has the mechanical properties that can be used 
in bone regeneration applications, after the SBF test, it 

should be between 1.2 and 2.0. In addition, the presence 
of elements such as sodium and magnesium on the pure 
HA surface was detected. It is due to the precipitation of 
ions such as magnesium, sodium and chlorine from the 
SBF solution during the formation of the apatite layer on 
the surface of HA ceramics immersed in the SBF solution 
[111]. As can be seen in Figure 11; the ratio of the apatite 
layer formed on the surface of the HA-1MgO composite 
showed a significant decrease compared to HA for all the 
SBF times, and, as a result of the EDS analysis, the Ca/P 

Figure 9.  SEM images of the HA-1M and HA-1M-S composites.
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Figure 10.  SEM and EDS analyses of HA for (a) 7, (b) 14, (c) 21 and (d) 28 days of immersion in the SBF solution.

d)  28 days

c) 21 days

b)  14 days

a)  7 days
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Figure 11.  SEM and EDS analyses of HA-1M for (a) 7, (b) 14, (c) 21 and (d) 28 days of immersion in the SBF solution.

d)  28 days

c) 21 days

b)  14 days

a)  7 days
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molar ratio of the apatite layer formed on the surface of 
the HA-1M composite was 1.74, 1.80, 1.75 and 1.71.  
It has been stated that the Ca/P molar ratio of the apatite 
layer formed on the surface of borophosphate bioglass for 
0.5 wt. % MgO is 2.063 and 2.91 for 3 wt. % MgO [112]. 
As can be seen from the SEM microstructure images of 
HA-1M-0.5S subjected to the SBF test (Figure 12); at the 
end of the 7th day, the apatite layer crystallised in a cu-
bic form. As a result of the 14- and 21-day SBF test, it has 
a denser and dendritic structure compared to the HA-1M 
composite. After the 28 days of the SBF test, its surface 
was completely covered with the apatite layer, that is, it 

contributed to the increase of the bioactivity of the HA-
1M composite. The Ca/P molar ratio of the apatite layer 
formed on the surface of this composite was 1.69, 1.76, 
1.72 and 1.93. Studies on bioactive systems containing 
Si, Ca, and P ions show that biomaterials containing 
these elements have better in vitro bioactive behaviour 
compared to conventional bioactive glasses, and these 
Si-containing biomaterials may be better candidates for 
drug release and bone regeneration. It has been stated 
that the addition of Si to systems containing Ca, Mg, P 
ions increases the bioactivity of the system [113].

b)  14 days

a)  7 days

c) 21 days

Figure 12.  SEM and EDS analyses of HA-1M-0.5S composite for (a) 7, (b) 14, (c) 21 and (d) 28 days of immersion in the SBF 
solution.                                                                                                                                                       continues on next page ...
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The akermanite in the HA-1M-0.5S composite is a si-
licate-based phase, and its presence in a material used in 
clinical applications is preferred since it contributes to 
the bone regeneration. The Ca, Mg and Si released would 
be beneficial to accelerate bone tissue regeneration and 
remodelling. It has been reported that the Mg, Ca and Si 
ions release from bioceramics for bone regeneration, as 
akermanite, decreases the immune responses caused by 
macrophages both in vitro and in vivo [114]. It also plays 
an important role in the development of healthy bones 
and connective tissues and provides rapid dissolution 
of magnesium and calcium. Deprotonation of silica 
from akermanite triggers not only growth, but also 
precipitation of apatite crystals [115]. Therefore, it can 
be said that the bioactivity of HA-1M-0.5S is higher than 
HA-1M.

CONCLUSIONS

	 In the present study, the effect of an SiO2 additive 
on the properties of an HA-1 wt. % MgO composite was 
investigated and the following results were obtained: 
1.	 HA without additives is composed of β-TCP, α-TCP 

and CaO.  In the HA-1M composite, whitlockite and 
farringtonite phases were detected. 

2.	 HA without an additive showed shrinkage of 18.20 ± 
± 0.62 % when sintering was carried out 1300 °C. It 
increased to 18.45 ± 0.61 % and 19.58 ± 1.21 % for 
the HA-1M and preferred HA-1M-0.5S composites, 
respectively.  

3.	 Increasing the sintering temperature contributed 
to an increase in the density of HA from 
2.316   ±  0.028  g∙cm-3 to 3.029 ± 0.018 g∙cm-3. 
The highest density for HA-1M was calculated 
as 3.068 ± 0.041 g∙cm-3. The densities of the HA-
1M-S composites were determined to vary between 
2.760 ± 0.040 and 2.970 ± 0.050 g∙cm-3.

4.	 The porosity of 26.589 ± 0.895 % of HA decreased 
to 2.912 ± 0.769 % after sintering at 1300 °C. It 

was 15.297 ± 1.430 % for HA-1M at 1100 °C and 
decreased to 1.257 ± 0.282 % at 1200 °C and 1.019 ± 
± 0.185 % at 1300 °C. The addition of SiO2 caused  
a slight increase in the porosity of HA-1M at 
elevated temperatures.

5.	 The relative density of HA increased from 75.365 ± 
± 0.789 to 98.353 ± 0.176 % with an increasing 
temperature. In HA-1M, it increased from 81.885 ± 
± 0.882 to 97.885 ± 1.312 %. The relative density 
varied between 87.519 ± 1.044 and 88.701 ± 
±  1.783  %, which was obtained by sintering at 
1100  °C and adding SiO2, where it was between 
89.739 ± 1.239 and 94.086 ± 1.138 % above 1100 °C 
in the HA-1M-S composites.  

6.	 The hardness of HA increased from 154.10 ± 5.40 to 
499.20 ± 12.39 HV. The highest fracture toughness 
for HA was measured as 0.96 ± 0.05 MPa∙m1/2 at 
1100 °C, but decreased to 0.71 ± 0.06 MPa∙m1/2 with 
the increasing temperature. The brittleness index of 
HA increased from 1.57 ± 0.05 to 6.86 ± 0.21 μ-1/2. 
The hardness and brittleness index of HA-1M also 
increased with the increasing temperature, but the 
highest fracture toughness was measured as 1.47 ± 
± 0.04 MPa∙m1/2 after sintering at 1200 °C. The 
hardness increased from 300.40 ± 68.60 to 431.70 ± 
± 18.24 HV for the HA-1M-0.25S composite, and 
from 288.68 ± 38.40 to 411.96 ± 24.81 HV for 
the HA-1M-1.0S composite. The highest fracture 
toughness of HA-1M-0.25S as 1.60 ± 0.16 MPa∙m1/2 
and HA-1M-1.0S as 1.35 ± 0.12 MPa∙m1/2 was 
obtained at 1200 °C, but at the sintering temperature 
of 1300 °C, they decreased to 1.03 ± 0.16 and 1.00 ± 
± 0.14 MPa∙m1/2, respectively. The brittleness index 
of these composites increased with the increasing 
temperature, which was measured as 2.11 ± 0.48, 
2.34 ± 0.21 and 4.11 ± 0.45  μ-1/2 for the HA-1M-
0.25S composite and as 2.39 ± 0.31, 2.46 ± 0.22 and 
3.51 ± 0.20 μ-1/2 for the HA-1M-1.0S composite. 
With the addition of SiO2 at an amount of 0.5 wt. %, 
a 20 % increase in the highest fracture toughness 

Figure 12.  SEM and EDS analyses of HA-1M-0.5S composite for (a) 7, (b) 14, (c) 21 and (d) 28 days of immersion in the SBF 
solution.

d)  28 days
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and a 35 % decrease in the brittleness index of HA-
1M could be achieved when sintering was carried 
out at 1200 and 1300 °C, respectively. 

7.	 The compression strength of HA decreased from 
130.2 ± 6.22 to 65.6 ± 5.59 MPa with the increase 
in the sintering temperature. The compressive 
strength of the HA-1M composite of 126.5 ± 
± 20.5 MPa at 1100 °C increased to its highest value 
of 183 ± 25.09  MPa at 1200 °C, but decreased to 
108 ± 17.51 MPa at 1300  °C. Similar behaviour 
was also observed in the HA-1M-S composites. 
The compressive strength of the HA-1M-0.25S 
composite at 1100, 1200 and 1300 °C was calculated 
as 135.2 ± 15.42, 187.59 ± 16.80 and 112.43 ± 
± 13.76 MPa, respectively. While the compressive 
strength of the HA-1M-0.5S composite is 149.27 ± 
± 16.95, 201.53 ± 18.01 and 124.61 ± 14.28 MPa, 
and is 129.83 ± 12.59, 166.72 ± 12.84 and 110.55 ± 
± 10.76 MPa for the HA-1M-1S composite.

8.	 The increase in the mechanical properties of the 
HA-1M composite with the addition of the SiO2 at 
an amount of 0.5 wt. % was related to the inhibition 
of the grain growth and the elimination of the 
microcracking. 

9.	 It was determined that the in vitro bioactivity of 
the HA-1M composite could be increased with the 
addition of 0.5 % SiO2.
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