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In the present study, the potential of barium zirconate (BaZrO3; 1-5 wt. %) on the sinterability, and properties of bovine 
hydroxyapatite (BHA) was evaluated. BHA decomposed into beta and alpha-tricalcium phosphate (β and α-TCP) at a 4.7 % 
rate. Tetracalcium phosphate (TTCP) was detected as the decomposition phase in the BaZrO3 added BHAs, and it increased 
up to 10.7 % with an increasing BaZrO3 ratio. In addition to TTCP, the phases of BaZrO3, Ba2ZrO4, σ-Ba2P2O7, Ba3P2O8 
and CaZrO3 were detected in the composites. The addition of BaZrO3 at an amount of 3 wt. % has a higher potential than 
the others to improve the sinterability and properties of BHA. It contributed to the increase in the fracture toughness from 
0.99 ± 0.13 to 1.80 ± 0.12 MPa·m1/2 and the compressive strength from 115.75 ± 4.27 to 173.66 ± 13.61 MPa, and the de-
crease in the brittleness index from 4.24 ± 0.31 to 2.45 ± 0.15 µ-1/2. The in-vitro bioactivity of BHA also increases with the 
additional BaZrO3. However; it is recommended to be used in applications that do not require load bearing in the human 
body due to its insufficient fracture toughness.

INTRODUCTION

	 Currently, implants are extensively applied for 
the medical treatment of skeletal injuries, degenerative 
bones, and decaying teeth. Among the ceramic materials, 
hydroxyapatite (Ca10(PO4)6(OH)2, HA) is widely used in 
various medical applications due to its chemical com-
position being similar to the mineral part of teeth and 
human bones [1]. HA does not cause any stimulating 
and repulsive effects when added into the human body. 
Moreover, HA can combine with the original bone tissue 
to form a solid bone [2]. It can be synthesised chemically 
or extracted from biological sources [3]. Biological HA 
contains different kinds of cationic and anionic impuri-
ties. These ionic impurities in biological HAs could be 
a reason for its better biocompatibility than synthetic 
HAs [4]. Therefore, many works have been devoted to the 
development of HA from biological sources like camel 
bones [5], chicken bones [6], goat bones [7], pork bones 
[8], sheep bones [9], and bovine bones [10]. Studies on 
bovine bone hydroxyapatite (BHA) produced in powder 
and granule forms have shown that it can be used for 
the treatment of maxillary sinus augmentation [11], 
alveolar bone loss [12], restorative biomaterial for den-
tal implants [13], and bone replacement [14]. A literature 
survey showed that BHA had a maximum density of 
2.72 ± 0.01 g∙cm-3 [15], a maximum compression strength 

of 75.20 ± 18.30 MPa [16] and a maximum hardness of 
337.90 ± 12.12 HV0.2 [17]. Therefore, it does not have 
enough mechanical reliability for use in the human body. 
Numerous studies have been conducted to improve its 
mechanical reliability by introducing different ceramic 
materials as shown in Table 1. 
	 An implant material planned for load-bearing appli-
cations in the human body should have a compressive 
strength between 100-230 MPa, and a fracture toughness 
between 2-6 MPa∙m1/2 [32]. A literature survey shows that 
BHA-composites, except those doped with perovskite-
type ceramic materials, i.e., CaTiO3, and LiAlO2, do not 
have high enough mechanical reliability to be used for 
load-bearing applications in the human body. Perovskites 
are a group of functional materials generally described 
with the ABX3 formula [33]. Among the ABO3-type pe- 
rovskites, BaZrO3 (barium zirconate) has several tech-
nological applications in many different areas due to its 
superior properties, such as a high dielectric constant 
(430 at 25  °C), low thermal expansion point (α = 8.7 
×10-6/°C), high chemical stability, high melting point 
(~3000 K) [34].  These properties make BaZrO3 suitable 
as a solid electrolyte in fuel cells, humidity sensors, 
microwave applications, wireless communications as 
electro-ceramic capacitors, etc [35]. In addition, BaZrO3 
is an alternative material for yttria-stabilised zirconia 
as a thermal barrier coating material in the aerospace 
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industry for supersonic jets [36]. It is also used as a coa- 
ting material on the surface of metallic [37], and cera-
mic [38] materials and as an additive material to 
0.775Na0.5Bi0.5TiO3-0.225BaSnO3 [39], NdBa2Cu3O7-δ [40], 
Ba2Cu3O7-x [41], YBa2Cu3O7-δ [42] alloys. However, 
there is no study on its potential as an additive material 
to BHA.
	 In this study, BHA with and without BaZrO3 
additives was sintered at 900  °C, 1000  °C, 1100  °C, 
1200 °C, and 1300 °C for 4 h to investigate the potential 
of BaZrO3 on the properties of BHA. The resultant 

samples were characterised using shrinkage, density, po-
rosity, hardness, fracture toughness, brittleness index, 
compression strength, X-ray diffraction (XRD), and 
scanning electron microscopy (SEM).

EXPERIMENTAL 

Materials and Methods

	 In the present study, BHA powders were derived 
from bovine bones according to our previous study [31]. 

Table 1.  Highest properties achieved in BHAs with various reinforcing materials (D: Density, H: Hardness, S: Strength, Kıc: 
Fracture toughness, BI: Brittleness Index, P: Porosity).

Reinforcement materials	
Property 	 Referenceand amounts in BHA matrix

TiO2 (5, and 10 wt. %)
	 H: 247.40 ± 11.45 HV0.2	 [18]	 S: 109.47 ± 3.58 MPa

CeO2 (1-10 wt. %)
	 D: 2.879 g∙cm-3	

[18]	 S: 107 MPa
	 D: 2.844 g∙cm-3

Li2O (0.25-2 wt. %)	 H: 174 HV0.2	 [20]
	 S: 75.4 MPa

20 wt. % TCP – 10 wt. % MgO
	 H: 2.5 GPa	

[21]	 S: 110 MPa

La2O3 (0.25-2 wt. %)
	 H: 287.1 ± 20.00 HV0.2	 [22]	 S: 88.84 ± 3.99 MPa

	 D: 2.94 ± 0.13 g∙cm-3

Y2O3 (0.5, and 1 wt. %)	 H: 672.4 ± 94.8 HV0.2	 [23]
	 S: 81.84 ± 27.01 MPa
	 D: 2.94 ± 0.13 g∙cm-3

ZrO2 (5, and 10 wt. %)	 H: 166 ± 2 HV0.2	 [24]
	 S: 50 ± 10 MPa
	 D: 2.766 g∙cm-3

Mullite (5-12.5 wt. %)	 H: 369.4 HV0.2	 [25]
	 S: 118 MPa
	 D: 2.84 ± 0.12 g∙cm-3

Borosilicate glass (5, and 10 wt. %)	 H: 232.95 ± 22.15 HV0.2	 [26]
	 S: 117.17 ± 15.98 MPa
	 D: 3.2058 g∙cm-3

SrO (5, and 10 wt. %)	 H: 257.4 ± 29.67 HV0.2	 [27]
	 S: 19.85 ± 3.33 MPa

B2O3 (5-10 wt. %)
	 H: 249.5 ± 62.9 HV0.2	 [28]	 S: 39.91 ± 14.4 MPa

	 D: 2.63 ± 0.06 g∙cm-3

Commercial Inert Glass (5-10 wt. %)	 H: 506.5 ± 67.85 HV0.2	 [29]
	 S: 132.98 ± 29.37 MPa
	 D: ≈ 2.9 g∙cm-3

CaTiO3 (5-10 wt. %)
	 H: ≈ 4.5 GPa 	

[30]	 P: ≈ 1%
	 Kıc: ≈ 4.5 MPa∙m1/2

	 D: 2.832 ± 0.003 g∙cm-3

	 H: 3.63 ± 0.26 GPa
LiAlO2 (1-5 wt. %) 	 S: 218 ± 14.02 MPa	 [31]
	 Kıc: 1.95 ± 0.18 MPa∙m1/2

	 BI: 2.09 ± 0.38 μ−1/2
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BHA and BaZrO3 (99.99  % in purity; Merck, USA, 
separately, in amounts of 1, 3, and 5 wt. %) powders were 
mixed and then homogenised for 4 h at 200 rev/min (rpm) 
in a ball milling device. BHA and the composite powders 
at a weight of 2.0 g were pelleted using a uniaxial press 
at 350 MPa. Before the sintering treatments, the pelleted 
samples were dried at 105 °C for 1 day, and they were 
sintered in air condition between 900 °C and 1300 °C for 
4 h at heating and cooling rates of 5 °C. 
	 The physical properties of BHA with and without 
the BaZrO3 additives were calculated using shrinkage, 
density, porosity, and relative density measurements. 
The shrinkage rates were calculated by comparing the 
thickness of each sample before and after the sintering 
process with electronic callipers which have 1/1000 
sensitivity as shown in Equation 1.

(1)

where S is the shrinkage (%), H0 is the thickness before 
sintering (mm), and H1 is the thickness after sintering 
(mm). 
	 The sintered densities (d) and porosities (p) of the 
bulk samples were determined using the Archimedes 
method in distilled water as the immersing medium 
using Equations 2, and 3, respectively.

(2)

(3)

where ds is the sintered density (g∙cm-3), p is the porosity 
(%), Mk is the dry weight, Ma is the wet weight of the 
sample and Ms is the wet weight of the suspension in 
distilled water.
	 The relative density of the composites was calcu-
lated by dividing the sintered density by the theoretical 
density of each composite, determined using the rule 
of mixture [43], and using the values of 3.156  g∙cm-3 
for BHA [44], and 5.960  g∙cm-3 for BaZrO3 [45], re-
spectively. The mechanical properties of BHA with and 
without the BaZrO3 additives were calculated using 
hardness, fracture toughness, brittleness index, and com- 
pression strength measurements. For the hardness and 
fracture toughness measurements, the samples were 
ground with SiC paper (between 800 and 5000  mesh) 
and then polished with a diamond paste (between 10 
and 1 µm) to obtain mirror-like surfaces. The hardness 
of the polished samples was analysed utilising a micro-
hardness tester (Future Tech FM 301, Japan) with a Vi-
ckers indenter with an application load of 1.962 N and a 
dwell time of 20 s because it provided the formation of 
a hardness indent without cracking. Equation 4 was used 
to calculate the HV (GPa), where F is the applied load 
(N), and d is the length of the indent (mm).

(4)

	 In order to calculate the fracture toughness, a load 
of 2.943 N was used for a dwell time of 10 s, which was 
determined by Equation 5. For the radial crack length 
measurement, optical images of the indents were taken.

(5)

where KIC is the fracture toughness, c is the radial crack 
dimension measured from the centre of the indent 
impression (m), and a is the half diagonal of the inden-
tation (m).
	 Ten samples were used to calculate the compressive 
strength of the pure BHA and each composite, which was 
determined at a loading rate of 2 mm∙min-1 with a Uni-
versal tester (Devotrans FU 50 kN, Turkey). Equation 6 
was employed to calculate the brittleness index [46] 
of the samples, where B is brittleness index, HV is the 
hardness, and Kıc is the fracture toughness.

(6)

	 The phases that occurred during the sintering pro-
cess in the samples were analysed by a Philips X’Pert 
X-ray diffraction machine using Cu-Kα as the radiation 
source at a scan speed of 0.6° per minute and a step scan 
of 0.02° in the range of 2θ values between 20° and 50°. 
The percentage of the phases was determined by Rietveld 
analysis. The changes in the surface morphology of the 
sintered samples were determined by an FEI Sirion XL30 
SEM machine. The average grain size of the sintered 
samples was determined by the linear intercept method. 
	 The samples with high mechanical properties were 
ground with SiC papers of up to 1200 mesh and rinsed 
ultrasonically in acetone, absolute alcohol and deionised 
water in turn five times to remove any contamination and 
particulates. The solution was prepared by dissolving rea-
gent grade sodium chloride (NaCl), potassium chloride 
(KCl), calcium chloride dihydrate (CaCl2∙2H2O), mag- 
nesium chloride hexahydrate (MgCl26H2O), sodium 
hydrogen carbonate (NaHCO3), dipotassium hydrogen 
phosphate trihydrate (K2HPO43H2O), sodium sulfate 
(Na2SO4) in deionised water. Then the solution was 
buffered to a physiological pH of 7.32 at 37 ± 1 °C by 
both hydrochloric acid (HCl) and tris (hydroxymethyl)
aminomethane ((CH2OH)3CNH2). The in vitro bioacti-
vity was evaluated by soaking the pellets mounted ver-
tically, in 40 mL of simulated body fluid (SBF) prepared 
according to Ref [47] for 14 and 28 days. After immersion 
in the SBF for various periods, the immersed samples 
were retrieved, gently rinsed with distilled water, and 
dried at 60  °C for 1/2 day. The SEM analysis finally 
examined the surface of the samples, and the Ca/P ratio 
was calculated by energy dispersive X-ray diffraction 
(EDS) analysis.
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RESULTS AND DISCUSSION

	 The XRD patterns of BHA without the BaZrO3 
additive are shown in Figure 1. The HA stability was not 
disrupted when BHA was sintered up to 1000  ºC, and 
all the XRD peaks up to this temperature are in good 
agreement with a characteristic pattern of HA. However, 
it decomposed to beta-tricalcium phosphate (β-TCP) at 
an amount of 3.3  % when sintering was carried out at 
1100 °C. Sintering at 1200 °C caused an increase in the 
amount of β-TCP from 3.3 % to 3.4 % and the formation 
of alpha-tricalcium phosphate (α-TCP) at about 0.3  % 
was detected. When sintering was performed at 1300 °C, 
the amount of β- and α-TCP increased to 3.9  % and 
0.8  %, respectively. The decomposition rate measured 
at 1300  °C for BHA at 4.7  % in the present study is 
about 32% less than that of Ref [48], and it has a suitable 
decomposition rate for use in the human body according 
to the ISO 13779-3:2018 standard [49]. If the sintering 
temperature of BHA reaches ≈1200 °C, the initial bipha-
sic mixture of HA + β-TCP transforms into a triphasic 
HA + β-TCP +α-TCP formulation [50]. This combina-
tion has great potential for enhancing the bioactivity and 
bone regeneration capabilities compared to a biphasic 
mixture of HA + β-TCP. The presence of the α-TCP phase 
in the three-phase HA + β-TCP + α-TCP formulation 
significantly increases the in vitro bioactivity, allowing 
the better control over the bioactivity and biodegradation 
of BHA implants [51].  

	 Figure 2 shows the XRD patterns of the BHA-
BaZrO3 composites. It is observed that HA and BaZrO3 
can be detected at temperatures of 900 and 1000  °C, 
regardless of the BaZrO3 ratio in the composites. When 
sintering is performed at and above 1100 °C, the sinte-
red samples consist of several phases such as BaZrO4, 
Sigma-Ba2P2O7, Ba3P2O8, CaZrO3 and tetracalcium phos- 
phate (TTCP). It is well documented in the literature 
that temperatures higher than 1000 °C are necessary for 

c)

b)

a)

Figure 2.  XRD patterns of BHA-BaZrO3 composites.

Figure 1.  XRD patterns of the pure BHA with the BaZrO3 addi-
tive depending on the sintering temperatures.
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the formation of these phases. As stated by Róg et al., 
Ba2ZrO4 occurs between 1100 and 1300 °C after the pe-
ritectic transformation of L+Ba2Zr3O7 in the BaO–ZrO2 
binary system [52]. Ba2Zr3O7 was not detected in the 
present study because it is formed at 1375  °C [53]. 
Sigma-Ba2P2O7 and Ba3P2O8 are in the family of alkaline 
earth phosphates with the general formula A2P2O7, 
A3(PO4)2, A7P4O17, A4(PO4)2O etc. [54]. Ba2P2O7 has 
two different crystal structure types: α-type, a low-
temperature phase (Orthorhombic: Pnma), and σ-type: 
a high-temperature phase (hexagonal: P-62m) [55]. Adding 
BaZrO3 and Ba2P2O7 as a filler enhances the radiation 
shielding property of the Polipol 314-filled polyester 
resin used in nuclear medicine [56]. Ba3P2O8 is non-
toxic [57], and it can be used for the removal of methyl 
blue (MB), which damages the skin, eyes, and mucous 
membrane of humans [58]. The TTCP detected in 
BaZrO3 added BHAs is a reliable CaP compound with 
excellent biocompatibility, and osteoconductivity [59]. 
It was calculated as 0.3  %, 0.4  %, 1.3  % for BHA-1 
BaZrO3, 0.6 %, 1.5 %, and 2.7 % for BHA-3 BaZrO3, 
and 1.9 %, 3.7 %, and 10.7 % for BHA-5 BaZrO3 com-
posites. It is seen that the addition of BaZrO3 to BHA 
causes a decrease in the HA percentage up to 89.3. 
However, the percentage of HA in BHA-TiO2 [60] and 
BHA-ZrO2 [61] composites were calculated as 49 %, and 
22.6 %, respectively. This means that adding BaZrO3 to 
BHA contributes to a decrease in the decomposition rate 
of BHA. 
	 HA is thermally unstable between 1100 and 1400 °C 
in the HA-ZrO2 system, and it decomposes into β- and 
α-TCP, and CaO. Moreover, the CaO in this system reacts 
with ZrO2 to form CaZrO3 [62], according to Reaction 1 
[63]. 

Ca10(PO4)6(OH)2 + ZrO2 → 3Ca3(PO4)2 + CaZrO3 + H2O
(1)

	 The CaZrO3 formed in the HA-ZrO2 system has also 
been detected in the BaZrO3-added BHAs. However, 
BaZrO3 added BHAs decomposed to TTCP instead 
of β- and α-TCP. HA decomposes between 700 and 
1400 °C as shown in Reactions 2, and 3 [64], depending 
on the atmosphere of the sintering, the stoichiometric 
composition, and other factors [65]. 

Ca10(PO4)6(OH)2 → 3Ca3(PO4)2 + CaO + H2O       (2)

3Ca3(PO4)2 + CaO →  Ca4O(PO4)2              (3)

	 The TTCP formation in the BHA-1 % BaZrO3 
composite is due to the reaction of β- and α-TCP with 
CaO, as seen in Reaction 3. The formation of TTCP in 
the BHA-3BaZrO3 and BHA-5BaZrO3 composites can 
be explained by Reaction 4. 

	 Ca10(PO4)6(OH)2 + 7BaZrO3 → Ba2ZrO4 +
	 + Sigma-Ba2P2O7 + Ba3P2O8 + 6CaZrO3 +                (4)
	 + Ca4O(PO4)2 + H2O 

	 It was concluded that this could be due to three 
reasons: First is the formation of CaZrO3 as seen in 
Reaction 1. The second is due to the reaction of β- and 
α-TCP with CaO, as in the BHA-1BaZrO3 composite. The 
third is the formation of the Sigma-Ba2P2O7 and Ba3P2O8 
phases due to the diffusion of phosphorus (ion radius: 
0.38  Å [66]) into the Ba-O (2.948  Å [67]) gap. It has 
been concluded that these phases prevent the formation 
of TCPs, in a free form. The same effect of phosphorus 
ions has also been confirmed for HA-Ti composites [68]. 
	 Figure 3 shows the average grain sizes and surface 
morphologies of the samples sintered between 1100 and 
1300 oC. The average grain size of pure BHA increased 
from 0.653 ± 0.029 µ to 2.838 ± 0.322 µ. It is in good 
agreement with Ref [69]. Although the BHA decompo-
sed into β- and α-TCP just like at 1200 °C, its sintering 
at 1300 °C caused microcracking. We concluded that it 
might be related to various reasons: the BHA sintered at 
1200 °C contains a porosity of 12.49 ± 1.50 % (Table 2), 
and the presence of up to 10 % porosity in HAs facilitates 
the removal of unstable OH- without microcracking [44].  
Microcracking occurs when a certain critical grain size 
is exceeded and the densification is higher than 90  % 
[70]. The necessary grain size and the densification rates 
have been calculated as 1.5 μm and 98 % for Ref [71], 
and as 0.4 μm and 99.5 % for Ref [72], respectively. It 
was observed that the average grain size of BHA-BaZrO3 
composites sintered at 1200 and 1300 °C was lower than 
that of pure BHA. It is thought that this is related to the 
intermediate phases, namely: Ba2ZrO4, sigma-BaP2O7, 
Ba3P2O8 and CaZrO3, formed between the BHA and 
BaZrO3 particulates. As stated in Ref [73], Ba2ZrO4 
inhibits the grain growth in BaZrO3 doped ceramics. 
Studies on barium-substituted hydroxyapatites (Ba-HAs) 
[74-76] have reported that sigma-BaP2O7 and Ba3P2O8 
phases contribute to a grain size reduction in the HA 
matrix material. CaZrO3 is located at the grain boundary 
of HA grains and acts as an effective grain growth 
inhibitor to the HAp grains [77]. These phases failed to 
show this behaviour in the BHA-5BaZrO3 composite 
because the addition of BaZrO3 at an amount of 5 wt. % 
causes a decrease in BHA’s sintering behaviour. The 
average grain size of BHA- 5 wt. % BaZrO3 composite 
of 0.845 ± 0.043  µ at 1100  °C increased to 1.573 ± 
± 0.037  µ at 1300  oC. However, the BHA-5  wt.  % 
BaZrO3 composite sintered at 1300 °C consists of pores 
located at the grain boundaries. The same microstruc-
ture was also confirmed for BHAs doped with 5 wt. % of 
–SiO2, –MgO, –Al2O3 and –ZrO2 [78], but microcracking 
was noted on the surface of these composites. The key 
factor associated with microcracking in these composites 
is the greater mismatch of thermal expansion coefficients 
(TECs) between the HA and dopant materials (HA: 12 
×10−6 oC [79], SiO2: 5.8 ×10-6 oC [80], MgO: 6.5 ×10−6 oC 
[81], Al2O3: 8.0 ×10−6  oC [82], % 3 Ytrria Stabilised-
ZrO2: 5.5 ×10-6 oC [83], BaZrO3: 8.7 ×10-6 oC [34]).
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	 The physical, and mechanical properties of BHA 
with and without BaZrO3 additives are tabulated in Tab- 
le 2. In the samples sintered up to 1100 °C, a maximum 
shrinkage of about 6  % was observed. After a sharp 
increase in shrinkage at 1200 °C, the shrinkage of BHA 
without BaZrO3 reached a maximum of 12.02 ± 0.52 %, 
and it reached to 12.34 ± 0.53 % for the BaZrO3 added 
samples at 1300 °C. As stated by Ref [84], BHA milled 
at 400  rpm for 16  h and then pelleted at 130  MPa 
exhibited a shrinkage of about 15 % when it was sintered 
at 1300 °C. There are two reasons for the lower shrinkage 
of BHA when compared with this study. First, it is the 
smaller particles that fill the voids between the larger 

ones resulting in higher green densities. The higher green 
density leads to the higher shrinkage [85]. Second, the 
lowest shrinkage value occurred at the highest uniaxial 
pressure because the density between the powders was 
perfect in the green bodies, so the sintering process did 
not require high shrinkage to form grain bonds in the 
sintered bodies [86]. The shrinkage behaviour of HA-
based composites is affected by the differential shrinkage 
behaviour of the various component phases that occurs 
between the HA and dopant materials [87]. It is seen that 
the BaZrO3 added samples showed higher shrinkage than 
the pure BHA, when sintering was carried out between 
900 and 1100 °C. We considered that it is related to the 

h) BHA-5 BaZrO3 – 0.845 ± 0.043 µ

e) BHA-3 BaZrO3 – 0.940 ± 0.192 µ

d) BHA-1 BaZrO3 – 0.981 ± 0.128 µ

a) BHA – 0.653 ± 0.029 µ

j) BHA-5 BaZrO3 – 1.573 ± 0.037 µ

g) BHA-3 BaZrO3 – 1.480 ± 0.393 µ

f) BHA-1 BaZrO3 – 1.699 ± 0.329 µ

c) BHA – 2.838 ± 0.322 µ

Microcrack

i) BHA-5 BaZrO3 – 1.369 ± 0.026 µ

f) BHA-3 BaZrO3 – 1.074 ± 0.373 µ

e) BHA-1 BaZrO3 – 1.521 ± 0.303 µ

b) BHA – 1.543 ± 0.176 µ

Figure 3.  The average grain size and surface morphologies of the samples sintered between 1100 and 1300 °C.

	 1100 °C	 1200 °C	 1300 °C
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growing of the BaZrO3 particulates and where they are 
located which fills the pores between the BHA particles 
without reacting. This is due to the thermal expansion 
coefficient of BaZrO3 being lower than that of HA. As 
the sintering temperature was increased from 1100 °C to 
1300 °C, the shrinkage rates of the composites decreased 
with an increasing BaZrO3 ratio. That is related to three 
reasons: Firstly, the loss of OH enhances the formation 
of CaZrO3 and the formation of CaZrO3 is accompanied 
by a volume expansion; the resulting sintering shrinkage 
is, therefore, small [77]. Secondly, the increase in the 
decomposition rate of BHA with an increasing BaZrO3 
ratio. Thirdly, the necessity for a temperature as high as 

1600 °C [88] to obtain more shrinkage by increasing the 
BaZrO3 ratio. The density of the BHA-5BaZrO3 compo-
site increased from 2.09 ± 0.01 g∙cm-3 at 900 °C to 2.89 
± 0.02 g∙cm-3 at 1300 °C. It is seen that the density of the 
BHA-5BaZrO3 composite at 1300 °C is slightly higher 
than the pure BHA. The same regime, at all the sintering 
temperatures, was also observed in other composites. 
It is thought that this is related to the phases formed at 
the interfaces between the BHA and BaZrO3 particu-
lates that have a higher theoretical density than HA 
(Ba2ZrO4: 5.94  g∙cm-3 [89], σ-Ba2P2O7: 4.11  g∙cm-3, 
Ba3P2O8: 5.26  g∙cm-3 [90], CaZrO3: 4.78 g∙cm-3 [91], 
TTCP: 3.05  g∙cm-3 [92], β-TCP: 3.07  g∙cm-3 [93], and 

Table 2.  Physical, and mechanical properties of the BHA with and without BaZrO3 additives as a function of the sintering tem-
perature.

	Temp. (°C)	 Property	 Pure BHA	 BHA-1 BaZrO3	 BHA-3 BaZrO3	 BHA-5 BaZrO3

	 900		  0.74 ± 0.37	 1.584 ± 0.86	 1.581 ± 0.73	 1.04 ± 0.36
	 1000		  1.21 ± 0.53	 2.68 ± 0.92	 2.30 ± 0.86	 1.45 ± 0.36
	 1100	 Shrinkage (%)	 4.57 ± 0.94	 6.18 ± 0.99	 3.61 ± 0.54	 3.40 ± 0.45
	 1200		  10.22 ± 0.31	 10.92 ± 1.26	 8.88 ± 0.37	 7.91 ± 0.39
	 1300		  12.02 ± 0.52	 12.34 ± 0.53	 12.29 ± 0.23	 12.03 ± 0.65
	 900		  2.03 ± 0.02	 2.094 ± 0.00	 2.092 ± 0.00	 2.04 ± 0.02
	 1000		  2.05 ± 0.03	 2.13 ± 0.01	 2.097 ± 0.00	 2.09 ± 0.01
	 1100	 Density (g∙cm-3)	 2.24 ± 0.00	 2.33 ± 0.00	 2.26 ± 0.01	 2.22 ± 0.01
	 1200		  2.70 ± 0.03	 2.68 ± 0.00	 2.66 ± 0.02	 2.53 ± 0.03
	 1300		  2.86 ± 0.04	 2.94 ± 0.02	 2.96 ± 0.00	 2.89 ± 0.02
	 900		  64.55 ± 0.69	 65.98 ± 0.28	 65.38 ± 0.23	 63.29 ± 0.74
	 1000		  65.16 ± 0.95	 67.47 ± 0.53	 65.47 ± 0.15	 64.76 ± 0.42
	 1100	 Relative density (%)	 71.24 ± 0.31	 73.62 ± 0.01	 70.81 ± 0.34	 68.74 ± 0.36
	 1200		  85.74 ± 1.03	 79.68 ± 1.93	 83.12 ± 0.72	 78.37 ± 1.10
	 1300		  90.77 ± 1.51	 92.91 ± 0.68	 92.62 ± 0.06	 89.51 ± 0.90
	 900		  34.96 ± 0.56	 31.84 ± 1.16	 33.28 ± 3.60	 36.70 ± 0.74
	 1000		  34.32 ± 0.86	 30.55 ± 2.63	 30.95 ± 0.63	 35.23 ± 0.42
	 1100	 Porosity (%)	 28.49 ± 0.41	 26.20 ± 0.29	 28.06 ± 0.56	 31.25 ± 0.36
	 1200		  12.49 ± 1.50	 14.71 ± 1.21	 14.62 ± 0.11	 21.62 ± 1.10
	 1300		  1.12 ± 0.75	 1.50 ± 0.83	 1.01 ± 0.20	 1.48 ± 0.90
	 900		  0.45 ± 0.04	 0.53 ± 0.08	 0.58 ± 0.07	 0.49 ± 0.09
	 1000		  0.50 ± 0.08	 0.66 ± 0.10	 0.64 ± 0.07	 0.58 ± 0.07
	 1100	 Hardness (GPa)	 1.37 ± 0.11	 1.45 ± 0.16	 1.44 ± 0.16	 1.38 ± 0.12
	 1200		  2.89 ± 0.27	 2.98 ± 0.20	 3.18 ± 0.19	 2.64 ± 0.24
	 1300		  4.19 ± 0.31	 4.33 ± 0.60	 4.41 ± 0.25	 4.22 ± 0.31
	 900		  0.30 ± 0.03	 0.48 ± 0.04	 0.50 ± 0.03	 0.33 ± 0.01
	 1000		  0.32 ± 0.04	 0.56 ± 0.06	 0.53 ± 0.04	 0.38 ± 0.03
	 1100	 Fracture toughness (MPa∙m1/2)	 0.74 ± 0.05	 0.83 ± 0.09	 0.79 ± 0.07	 0.70 ± 0.06
	 1200		  0.85 ± 0.02	 1.22 ± 0.11	 1.56 ± 0.09	 0.78 ± 0.07
	 1300		  0.99 ± 0.13	 1.40 ± 0.15	 1.80 ± 0.12	 1.02 ± 0.10
	 900		  1.51 ± 0.15	 1.10 ± 0.02	 1.16 ± 0.01	 1.48 ± 0.04
	 1000		  1.56 ± 0.25	 1.17 ± 0.05	 1.20 ± 0.02	 1.52 ± 0.07
	 1100	 Brittleness index (µ-1/2)	 1.85 ± 0.15	 1.74 ± 0.09	 1.82 ± 0.11	 1.97 ± 0.10
	 1200		  3.40 ± 0.32	 2.44 ± 0.10	 1.89 ± 0.14	 3.38 ± 0.15
	 1300		  4.24 ± 0.31	 3.09 ± 0.12	 2.45 ± 0.15	 4.13 ± 0.18
	 900		  29.25 ± 4.27	 36.66 ± 9.07	 31.00 ± 9.01	 30.66 ± 5.29
	 1000		  32.50 ± 8.50	 43.33 ± 5.50	 42.00 ± 3.60	 38.66 ± 13.86
	 1100	 Compressive strength (%)	 59.75 ± 5.31	 99.33 ± 7.23	 80.66 ± 5.85	 52.00 ± 4.24
	 1200		  108.20 ± 6.45	 111.66 ± 9.29	 145.33 ± 3.21	 101.66 ± 10.69
	 1300		  115.75 ± 4.27	 156.00 ± 11.93	 173.66 ± 13.61	 127.66 ± 5.65
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α-TCP: 2.86 g∙cm-3 [94]). Although the densities of the 
pure BHA and composites increased with an increasing 
sintering temperature, they could not reach the theoretical 
values calculated in the experimental section, which is 
due to the porosity. The samples sintered up to 1100 °C 
showed a slight decrease in porosity from 36.70 ± 0.74 % 
to 26.20 ± 0.29  % due to the local interconnections 
between the grains. Sintering at 1200 °C contributed to 
the reduction of porosity up to 12 % and to the positioning 
of the porosities between the BHA-BHA and BHA-
BaZrO3 particulates. The porosity of the samples showed 
a sharp decrease from 12 % to 1-1.5 % when sintering 
was carried out at 1300  °C. The porosity of 1-1.5  % 
obtained from the composites are lower than that of the 
TiO2 (7 %) and Al2O3 (18 %)-doped HAs [95]. This is 
related to the increase in the decomposition rate of HA 
when it is doped with TiO2 and Al2O3. Dense HA 
bioceramics are used for implant-coating targets or bone 
repair, and fillers are typically prepared using high-
temperature sintering processes. It has been reported that 
the sintering temperature affects the porosity, grain size, 
densification, shrinkage, calcium/phosphorus (Ca/P) 
ratio, and content of the amorphous phase, which can 
alter the mechanical and biological properties of the 
resulting CaP bioceramics. In dense bioceramics, 
mechanical properties can significantly improve with a 
decreasing porosity and grain size [95]. As the sintering 
temperature increased from 900  °C to 1300 °C, the 
relative density of the samples increased. The highest 
relative density of BHA was calculated as 90.77 ± 
1.51 %. It changes between 89.51 ± 0.90 % and 92.62 ± 
0.06 % for the composites. While HA ceramics can be 
sintered at a high relative density by pressureless 
sintering in the temperature range of 1100-1300 °C, it is 
not possible to reach a high relative density in the above 
temperature range for various reasons in most HA-based 
composites: The first reason is the making of HA 
composites with reinforcing reagents and dopant 
materials causes an increase in the decomposition rate of 
the HA. Secondly, the intermediate phases formed as a 
result of the reactions between the additives and HA 
cause a decrease in the sintering ability of the system, as 
in HA-B2O3 [96], and HA-TiO2 [97]. The hardness of 
0.45 ± 0.04 GPa, and compressive strength of 29.25 MPa 
of pure BHA at 900 °C increased with an increasing 
sintering temperature and reached 4.19 GPa ± 0.31 GPa, 
and 115.75 ± 4.27  MPa at 1300  °C, respectively. 
Although BHA is composed of β and α-TCPs, as shown 
in Figure 1, its hardness and compressive strength were 
higher than in previous studies [15-17]. The reason is 
that the BHA powders in these studies have a starting 
grain size of 300 µ. Previous studies [98, 99] show that 
the hardness, fracture toughness and compressive 
strength of HA ceramics increase with a decrease in the 
starting grain size. The presence of β- and α-TCPs in the 
HA in a small amount is useful to where it can improve 
the bioactive and bioresorbable properties of the HA. 

However, the excess amount of β- and α-TCPs in the HA 
causes a decrease in the mechanical strength of HA-ba-
sed bioceramics [100]. It is reported that if a reinforcing 
agent, such as alumina, titania, and zirconia, is added to 
HA, the mechanical properties are reduced since the 
decomposition rate of HA is up to 70 %, and the samples 
are very brittle and friable [101]. The hardness of BaZrO3 
added BHAs increased with an increasing sintering 
temperature as in the pure BHA. A maximum hardness 
of 4.41 ± 0.60  GPa was obtained for the composites. 
It meets the minimum hardness of 4.2  GPa [102] for 
cortical bone applications. The highest hardness values 
of the composites are higher than that of pure BHA for 
various reasons: the hardness increase with a decreasing 
grain size is typically attributed to the reduced free path 
for dislocations in both metals and ceramics [103]. The 
polyphase HAs partially decomposed to TTCP exhibit 
greater hardness than monophase HAs [104]. Although 
the amount of the TTCP phase after sintering at 1300 °C 
in the BHA-5 BaZrO3 composite is higher than that of 
BHA-1 BaZrO3 and BHA-3 BaZrO3 composites, there 
are two reasons for its low hardness value: Firstly, the 
relative density value of BHA-5BaZrO3 composite is 
lower than the others. Secondly, obtaining a more 
heterogeneous microstructure compared to the other 
composites. The fracture toughness is defined as the 
resistance offered by a material to the sudden propagation 
of a crack [105]. The highest fracture toughness of HA 
ceramics changes between 0.6-1.25 MPa∙m1/2 depending 
on the grain size [106], powder morphology [107], 
sintering method [108], and sintering atmosphere [109]. 
However, it de-creases when the relative density of HA 
exceeds ≈ 95 % [110] due to an increase in grain size. 
The fracture tough-ness of BHA without BaZrO3 
increased to the highest value of 0.99 ± 0.13 MPa∙m1/2 
when sintering was performed at 1300 °C. It was sig-
nificantly improved by adding 1 wt. % and 3 wt. % of 
BaZrO3, and it attained 1.40 ± 0.15 and 
1.80 ± 0.12 MPa∙m1/2 with an increase of 41 % and 81 %, 
respectively. The mechanisms that increase the toughness 
of the composites compared to BHA involve an expansion 
of the energy required to extend a crack since there are 
other crystalline phases that are widely spread in the 
microstructure detected by the XRD analysis. As happens 
with other ceramic matrix composites, a combination of 
crack bridging, crack de-flection, and microcracking 
occurs with a great reflection in the fracture toughness 
improvement [31]. The latter mechanism may appear as 
a consequence of the properties mismatched between the 
adjacent grains and by the phase transformation. The 
presence of tougher phases in a composite, besides 
causing some crack in-flection, can also be responsible 
for some crack bifur-cation around the grains leading to 
crack bridging. Transformation-toughened ceramics owe 
their high toughness to the stress-induced transformation 
of a meta-stable phase in the vicinity of a propagating 
crack. The transformation of HA to TTCP acts as a 
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barrier to the propagation of the cracks during the 
indentation test [111]. The fracture toughness of the 
BHA-3 BaZrO3 composite is higher than that of 
HA-MnO2 (1.65  MPa∙m1/2 [112]) and HA-MgO 
(1.78 MPa∙m1/2 [113]) composites. It is lower than corti-
cal bone (2-6 MPa∙m1/2 [114]), so its use as a load-bearing 
material in the human body should be avoided [115]. The 
brittle index of pure BHA reached the maximum value of 
4.24 ± 0.31  μ−1/2 by increasing sintering temperature, 
which was calculated as 4.6 μ−1/2 [116], 4.85 μ−1/2 [117], 
9.39 μ−1/2 [118], 24.8 μ−1/2 [46], 25.6 μ−1/2 [119]. As the 
brittleness index increases, the brittleness of the material 
increases. This means that BHA used as a matrix material 
in the present study has lower brittleness than the 

previous studies. The brittle-ness index of BaZrO3 added 
BHAs changes between 1.10 ± 0.02 and 4.13 ± 0.18 μ−1/2. 
A reduction of about 42  % in the brittleness index of 
BHA was achieved by the addition of BaZrO3 at an 
amount of 3  wt.  %, when sintering was performed at 
1300  °C. It has also been observed that the brittleness 
index of the BHA-3 BaZrO3 composite is lower than that 
of HA-3 wt. % MgO (3.72 µm-1/2 [120]) and HA-3 wt. % 
Al2O3 (4.28  µm-1/2 [121]) composites. The highest 
compression strength of BHA reached 173.66 ± 
± 13.61 MPa with an increase of 50 %, by the addition of 
BaZrO3 at amount of 3 wt.  %. This is related to two 
reasons: Firstly, the high young modulus of BaZrO3 
(E = 125 GPa [122]) and CaZrO3 (E = 228 GPa [123]) 

c) BHA-3 BaZrO3 – 14 days

a) BHA-1 BaZrO3 – 14 days

a) BHA – 14 days

d) BHA-3 BaZrO3 – 28 days

b) BHA-1 BaZrO3 – 28 days

b) BHA – 28 days

Figure 5.  Surface morphologies of the BHA-1 BaZrO3 and BHA-3B aZrO3 composites subjected to in vitro bioactivity testing for 
14 and 28 days.

Figure 4.  Surface morphology of the pure BHA subjected to in vitro bioactivity testing for 14 and 28 days.
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promotes the reinforcement of the HA matrix (E = 
= ~95  GPa), and consequently improve the resistance 
[124]. Secondly, the Sigma-Ba2P2O7 and Ba3P2O8 phases 
contribute to the densification. Increasing the densi-
fication leads to a decrease in the porosity, which causes 
a decrease in the cross-sectional area on which the load 
is applied [125]. Simulated body fluid (SBF) is a meta-
stable calcium phosphate solution that is supersaturated 
relative to apatite. It can be used to study the ability of 
materials to induce bone-like apatite and to reflect the 
biological activity of materials [126]. 
	 Figure 4 shows the surface morphology of the pure 
BHA subjected to in vitro bioactivity testing for 14 and 
28 days. BHA has a chemical composition similar to 
human bone, with trace amounts of carbonate, sodium, 
magnesium, iron, fluoride, silicate, and chloride [127]. 
It is seen that the apatite layer on the surface of BHA 
increases with an increase in the SBF time. Although 
many apatites in a cubic form were imaged after 14 days 
of immersion on the surface of pure BHA, its surface 
was covered by an apatite layer when immersion time 
is reached 28  days. The Ca/P ratio in pure BHA was 
calculated as 1.69 and 1.63, which are close to the Ca/P 
ratio for hydroxyapatite (1.67) [128], respectively, at 14 
and 28 days.
	 Figure 5 shows the surface morphologies of BHA-1 
BaZrO3 and BHA-3 BaZrO3 composites subjected to in 
vitro bioactivity testing for 14 and 28 days.  As a result 
of 14 days of immersion, although a low-rate apatite 
structure was formed in BHA-1 BaZrO3, the whole 
surface of the BHA-3 BaZrO3 composite was covered 
with apatite. At this immersion time, the Ca/P ratio for 
BHA-1BaZrO3 is 2.16 and for BHA-3 BaZrO3 is 1.82. 
When the immersion time reached 28 days, the surfaces 
of the BHA-BaZrO3 composites were covered entirely 
with apatite as in BHA. The Ca/P ratios were measured 
as 1.57 for BHA-1 BaZrO3 and 1.68 for BHA-3 BaZrO3. 
The crack-like regions that formed along the interfaces 
of the apatite layers on the surface of the samples are 
drying cracks [129]. 
	 In vitro bioactivity studies showed that the addi- 
tion of BaZrO3 at an amount of 3 wt. % to BHA 
greatly increased the bioactivity of the BHA. There are 
several reasons for this. Firstly, the presence of CaZrO3 
contributes to an increase in the bioactivity of HA [130]. 
Secondly, the low grain size of BHA-3 BaZrO3 compared 
to the pure BHA and BHA-1 BaZrO3 composite. It has 
been confirmed in previous studies [131,132] that a 
decrease in grain size increases the in vitro bioactivity of 
HA based bioceramics.

CONCLUSIONS

	 In the present study, the potential of BaZrO3 on 
the sintering performance and properties of BHA was 
evaluated by microstructural and mechanical analyses. 
While BHA without BaZrO3 started to decompose to 

β-TCP at a rate of 3.3 % at 1100 °C, it decomposed into 
β- and α-TCP phases at a total rate of 4.7  % when it 
was sintered at 1300  °C. BaZrO3 added BHAs consist 
of the phases that are HA, BaZrO3, Ba2ZrO4, Sigma-
Ba2P2O7, Ba3P2O8, and CaZrO3. TTCP was detected as 
the decomposition phase in the BaZrO3 composites. 
An increase in the BaZrO3 ratio led to an increase in the 
amount of TTCP, and it was calculated as 10.7 % after 
sintering at 1300  °C. The addition of the BaZrO3 at 
amount of 3 wt. % was determined to have the potential 
to improve the sinterability and properties of BHA. 
It increased the fracture toughness from 0.99 ± 0.13 to 
1.80 ± 0.12 MPa∙m1/2, and the compression strength from 
115.75 ± 4.27 to 173.66 ± 13.61 MPa, but it decreased 
the brittleness index from 4.24 ± 0.31 to 2.45 ± 0.15 µ-1/2. 
It also contributed to greatly increasing the bioactivity of 
the BHA. However; the BHA-3 wt. % BaZrO3 composite 
should be avoided for use in load bearing applications in 
the human body due to its insufficient fracture toughness.
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