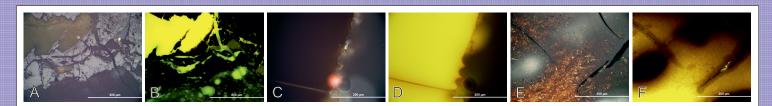
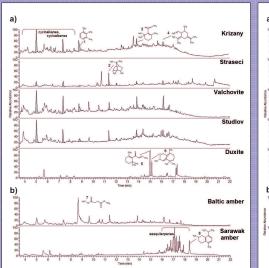
Organic geochemistry of fossil resins from the Czech Republic

Martina Havelcová^a, Ivana Sýkorová^a, Karel Mach^b, Zdeněk Dvořák^b ^aInstitute of Rock Structure and Mechanic, ASCR, V Holešovičkách 41, Prague 8,182 09, Czech Republic ^bSeveročeské doly, a.s., Doly Bílina, ul. 5. května 213, 418 29, Bílina, Czech Republic

Five fossil resin samples of Cretaceous to Neogene age collected in the area of Czech Republic were chosen to observe differences among them. The purpose of this work is to study chemical and maceral composition of the samples to correlate the resins from different geological locations by elemental and petrographic analysis, pyrolysis-gas chromatography/mass spectrometry using in situ sample derivatisation with tetramethylammonium hydroxide (TMAH-Py-GC/MS), and gas chromatography/mass spectrometry (GC/MS) of resins extracts. For comparison, two ambers were also analysed.

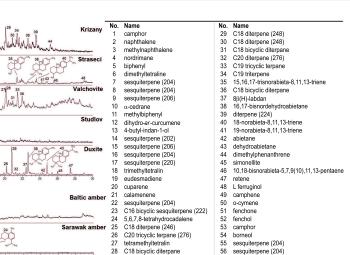
Overview of samples of fossil resins investigated and their maceral composition


Designation	Locality	Lithology	Age	Maceral composition (vol. %)
Krizany	Křižany	uranium mine, sands	Cretaceous/Cenomanian	Liptinite: 96.5 % Huminite: 3.5 %
Straseci	Nové Strašecí	black clays	Cretaceous/Cenomanian	Liptinite: 98.2 % Huminite: 1.8 %
Valchovite	Valchov	coal clays	Cretaceous/Cenomanian	Liptinite: 100 % resinite
Studlov	Študlov	coal slate	Paleogene/Eocene	Liptinite: 100 % resinite
Duxite	Bílina	fossil wood in green clays	Neogene/Miocene	Liptinite: 100 % resinite
Baltic amber	Burg on Fehmarn (Denmark)	sands	Paleogene/Eocene	Liptinite: 100 % resinite
Sarawak ambe	r Merit Pila (Malaysia)	coal seam	Neogene/Miocene	Liptinite: 88.8 % Huminite: 10.2 % Inertinite: 1.0 %


Map of the Czech Republic with sampling locations of fossil resin

Photomicrographs of resinite occurrences: dark brown, opaque resin - Krizany (A); brown, partly transparent resin - Straseci (B); butterscotch, opaque resin -Valchovite (C); brown, partly transparent resin - Studlov (D); brown, partly transparent, resinous gloss -Duxite (E); brown, partly transparent resin - Baltic amber (F); brown and partly transparent resin - Sarawak amber (G).

Compact form of resinite (R, = 0.17%) - Sarawak amber (A); yellow fluorescence colour and droplet resinite (R, = 0.10%); yellow-green colour of fluorescence in mylonitized ulminite (R, = 0.43%) with fissures filled by exsudatinite - Sarawak amber (B); resinite (R, = 0.09%) - Studlov (C); yellow fluorescence colour - Studlov (D); fissures in unevenly altered resinite with R increased from 0.12% to 0.33% - Krizany (E); yellow fluorescence colour of unaltered resinite and brown to dark fluorescence colour of altered resinite -Krizany (F).



Total ion pyrograms of (a) fossil resins collected in the Czech Republic; (b) ambers. Peaks of the compounds common for Krizany, Straseci, Valchovite, and Studlov samples are shown in gray: dimethylcyclohexene, tetramethylcyclopentene, trimethylbenzene (1), borneol (2), 1,3,3-trimethyl-2-(2methylcyclopropyl)-1-cyclo-hexene (3), elemenene (4). The most intense compounds are drawn: β -damascone (5) and longipinane (6) in Duxite, succinic acid and methylester (7) in Baltic amber, cadinatriene (8) in Sarawak amber.

21 The filled peaks are *n*-alkanes. petrographic characteristics macerals

The study was financially supported by Severočeské doly, a.s. and by the Czech Science Foundation (Research Grant No. 13-18482S).

Total ion chromatograms of (a) fossil resins collected in the Czech Republic; (b) ambers.

✓ The studied samples represent fossil resins of different age, shape, colour and

Valchovite, Studlov, Duxite and Baltic amber are pure fossil resins composed of resinite Resinite dominates in Krizany, Straseci and Sarawak amber which include also

admixture of plant tissue remnants of the cellulose-lignin base or fragments of lignite

Pyrograms of Krizany, Straseci, Valchovite and Studlov reveal similar record but the chromatograms differ significantly: diterpene compounds prevail in the extracts of Krizany and Valchovite, sesquiterpene compounds in extracts of Straseci and Studlov. The results point to the conifer plants as the source tree.

Sample of Duxite is guite different from the other fossil resins and the results point to the coniferous family Cupressaceae as the source tree

Baltic amber displays typical fingerprint for this type of resin with compounds as succinic acid, fenchol, camphor or borneol (Sciadopityaceae or Pinaceae)

Sarawak amber has fingerprints diverging from all studied samples. This amber was produced by angiosperm trees of the genus Dipterocarpaceae